Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine

Authors Biris AR, Pruneanu S, Pogacean F, Lazar MD, Borodi G, Ardelean S, Dervishi E, Watanabe F, Biris AS

Received 10 January 2013

Accepted for publication 7 February 2013

Published 12 April 2013 Volume 2013:8(1) Pages 1429—1438

DOI https://doi.org/10.2147/IJN.S42613

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Alexandru R Biris,1 Stela Pruneanu,1 Florina Pogacean,1 Mihaela D Lazar,1 Gheorghe Borodi,1 Stefania Ardelean,1 Enkeleda Dervishi,2 Fumiya Watanabe,2 Alexandru S Biris2

1National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania; 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA

Abstract: This work describes the synthesis of few-layer graphene sheets embedded with various amounts of gold nanoparticles (Gr-Au-x) over an Aux/MgO catalytic system (where x = 1, 2, or 3 wt%). The sheet-like morphology of the Gr-Au-x nanostructures was confirmed by transmission electron microscopy and high resolution transmission electron microscopy, which also demonstrated that the number of layers within the sheets varied from two to seven. The sample with the highest percentage of gold nanoparticles embedded within the graphitic layers (Gr-Au-3) showed the highest degree of crystallinity. This distinct feature, along with the large number of edge-planes seen in high resolution transmission electron microscopic images, has a crucial effect on the electrocatalytic properties of this material. The reaction yields (40%–50%) and the final purity (96%–98%) of the Gr-Au-x composites were obtained by thermogravimetric analysis. The Gr-Au-x composites were used to modify platinum substrates and subsequently to detect adenine, one of the DNA bases. For the bare electrode, no oxidation signal was recorded. In contrast, all of the modified electrodes showed a strong electrocatalytic effect, and a clear peak for adenine oxidation was recorded at approximately +1.05 V. The highest increase in the electrochemical signal was obtained using a platinum/Gr-Au-3-modified electrode. In addition, this modified electrode had an exchange current density (I0, obtained from the Tafel plot) one order of magnitude higher than that of the bare platinum electrode, which also confirmed that the transfer of electrons took place more readily at the Gr-Au-3-modified electrode.

Keywords: graphene, gold nanoparticles, chemical vapor deposition, oxidation of adenine

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Direct electrochemical oxidation of S-captopril using gold electrodes modified with graphene-AuAg nanocomposites

Pogacean F, Biris AR, Coros M, Lazar MD, Watanabe F, Kannarpady GK, Al Said SA Farha, Biris AS, Pruneanu S

International Journal of Nanomedicine 2014, 9:1111-1125

Published Date: 25 February 2014

Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells

Karmakar A, Bratton SM, Dervishi E, Ghosh A, Mahmood M, Xu Y, Saeed L, Mustafa T, Casciano D, Radominska-Pandya A, Biris AS

International Journal of Nanomedicine 2011, 6:1045-1055

Published Date: 18 May 2011

Readers of this article also read:

Intradermal air pouch leukocytosis as an in vivo test for nanoparticles

Vandooren J, Berghmans N, Dillen C, Van Aelst I, Ronsse I, Israel LL, Rosenberger I, Kreuter J, Lellouche JP, Michaeli S, Locatelli E, Comes Franchini M, Aiertza MK, Sánchez-Abella L, Loinaz I, Edwards DR, Shenkman L, Opdenakker G

International Journal of Nanomedicine 2013, 8:4745-4756

Published Date: 13 December 2013

Application of liposomal technologies for delivery of platinum analogs in oncology

Liu D, He C, Wang AZ, Lin W

International Journal of Nanomedicine 2013, 8:3309-3319

Published Date: 26 August 2013

Dextran-b-poly(L-histidine) copolymer nanoparticles for pH-responsive drug delivery to tumor cells

Hwang JH, Choi CW, Kim HW, Kim DH, Kwak TW, Lee HM, Kim CH, Chung CW, Jeong YI, Kang DH

International Journal of Nanomedicine 2013, 8:3197-3207

Published Date: 21 August 2013

Reversing chemoresistance of malignant glioma stem cells using gold nanoparticles

Orza A, Soriţău O, Tomuleasa C, Olenic L, Florea A, Pana O, Bratu I, Pall E, Florian S, Casciano D, Biris AS

International Journal of Nanomedicine 2013, 8:689-702

Published Date: 1 March 2013

Degradable copolymer based on amphiphilic N-octyl-N-quatenary chitosan and low-molecular weight polyethylenimine for gene delivery

Liu CC, Zhu Q, Wu WH, Xu XL, Wang XY, Gao S, Liu KH

International Journal of Nanomedicine 2012, 7:5339-5350

Published Date: 8 October 2012

Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma cell proliferation

Sun H, Chen X, Chen D, Dong M, Fu X, Li Q, Liu X, Wu Q, Qiu T, Wan T, Li S

International Journal of Nanomedicine 2012, 7:3295-3307

Published Date: 6 July 2012

Interaction of cancer cells with magnetic nanoparticles modified by methacrylamido-folic acid

Nagehan Saltan, H Mehtap Kutlu, Deniz Hür

International Journal of Nanomedicine 2011, 6:477-484

Published Date: 28 February 2011