Back to Journals » Patient Preference and Adherence » Volume 7

Factors associated with nonattendance at clinical medicine scheduled outpatient appointments in a university general hospital

Authors Giunta D, Briatore A, Baum A, Luna D, Waisman G, Gonzalez Bernaldo de Quiros F

Received 20 July 2013

Accepted for publication 4 September 2013

Published 8 November 2013 Volume 2013:7 Pages 1163—1170

DOI https://doi.org/10.2147/PPA.S51841

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Diego Giunta,1,2 Agustina Briatore,3 Analía Baum,3 Daniel Luna,3 Gabriel Waisman,2 Fernán Gonzalez Bernaldo de Quiros1–3

1Internal Medicine Research Unit, 2Internal Medicine Department, 3Health Informatics Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina

Introduction: Nonattendance at scheduled outpatient appointments for primary care is a major health care problem worldwide. Our aim was to estimate the prevalence of nonattendance at scheduled appointments for outpatients seeking primary care, to identify associated factors and build a model that predicts nonattendance at scheduled appointments.
Methods: A cohort study of adult patients, who had a scheduled outpatient appointment for primary care, was conducted between January 2010 and July 2011, at the Italian Hospital of Buenos Aires. We evaluated the history and characteristics of these patients, and their scheduling and attendance at appointments. Patients were divided into two groups: those who attended their scheduled appointments, and those who did not. We estimated the odds ratios (OR) and corresponding 95% confidence intervals (95% CI), and generated a predictive model for nonattendance, with logistic regression, using factors associated with lack of attendance, and those considered clinically relevant. Alternative models were compared using Akaike's Information Criterion. A generation cohort and a validation cohort were assigned randomly.
Results: Of 113,716 appointments included in the study, 25,687 were missed (22.7%; 95% CI: 22.34%–22.83%). We found a statistically significant association between nonattendance and age (OR: 0.99; 95% CI: 0.99–0.99), number of issues in the personal health record (OR: 0.98; 95% CI: 0.98–0.99), time between the request for and date of appointment (OR: 1; 95% CI: 1–1), history of nonattendance (OR: 1.07; 95% CI: 1.07–1.07), appointment scheduled later than 4 pm (OR: 1.30; 95% CI: 1.24–1.35), and specific days of the week (OR: 1.00; 95% CI: 1.06–1.1). The predictive model for nonattendance included characteristics of the patient requesting the appointment, the appointment request, and the actual appointment date. The area under the receiver operating characteristic curve of the predictive model in the generation cohort was 0.892 (95% CI: 0.890–0.894).
Conclusion: Evidence related to patient characteristics, and the identification of appointments with a higher likelihood of nonattendance, should promote guided strategies to reduce the rate of nonattendance, as well as to future research on this topic. The use of predictive models could further guide management strategies to reduce the rate of nonattendance.

Keywords: nonattendance, appointments, schedules

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010