Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays

Authors Zhao Y, Xing Q, Janjanam J, He K, Long F, Low K, Tiwari A, Zhao F, Shahbazian-Yassar R, Friedrich C, Shokuhfar T

Received 2 April 2014

Accepted for publication 1 June 2014

Published 11 November 2014 Volume 2014:9(1) Pages 5177—5187


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Yu Zhao,1 Qi Xing,2 Jagadeesh Janjanam,3 Kun He,1,4 Fei Long,1 Ke-Bin Low,5 Ashutosh Tiwari,3 Feng Zhao,2 Reza Shahbazian-Yassar,1 Craig Friedrich,1,8 Tolou Shokuhfar1,6–8

1Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI, USA; 2Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA; 3Department of Chemistry, Michigan Technological University, Houghton, MI, USA; 4School of Materials Science and Engineering, Shandong University, Jinan, People’s Republic of China; 5Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA; 6Department of Physics, University of Illinois at Chicago, Chicago, IL, USA; 7Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL, USA; 8Multi-Scale Technologies Institute, Michigan Technological University, Houghton, MI, USA

Abstract: Infection-related complications have been a critical issue for the application of titanium orthopedic implants. The use of Ag nanoparticles offers a potential approach to incorporate antimicrobial properties into the titanium implants. In this work, a novel and simple method was developed for synthesis of Ag (II) oxide deposited TiO2 nanotubes (TiNTs) using electrochemical anodization followed by Ag electroplating processes in the same electrolyte. The quantities of AgO nanoparticles deposited in TiNT were controlled by selecting different electroplating times and voltages. It was shown that AgO nanoparticles were crystalline and distributed throughout the length of the nanotubes. Inductively coupled plasma mass spectrometry tests showed that the quantities of released Ag were less than 7 mg/L after 30 days at 37°C. Antimicrobial assay results show that the AgO-deposited TiNTs can effectively kill the Escherichia coli bacteria. Although the AgO-deposited TiNTs showed some cytotoxicity, it should be controllable by optimization of the electroplating parameters and incorporation of cell growth factor. The results of this study indicated that antimicrobial properties could be added to nanotextured medical implants through a simple and cost effective method.

Keywords: TiO2 nanotube arrays, anodization, AgO nanoparticles, antimicrobial, cytotoxicity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]