Back to Browse Journals » International Journal of Nanomedicine » Volume 7

Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation

Authors Wang HW, Cheng CW, Li CW, Chang HW, Wu PH, Wang GJ

Received 16 January 2012

Accepted for publication 15 February 2012

Published 10 April 2012 Volume 2012:7 Pages 1865—1873


Review by Single-blind

Peer reviewer comments 2

Hsiao-Wei Wang1, Chung-Wei Cheng2, Ching-Wen Li3, Han-Wei Chang4, Ping-Han Wu2, Gou-Jen Wang
1Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan, 2Laser Application Technology Center, Industrial Technology Research Institute, Tainan County, Taiwan, 3Department of Mechanical Engineering, 4Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, People’s Republic of China

Abstract: One of the persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system could be a feasible solution to this problem. In this study, the femtosecond laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds of polylactic-co-glycolic acid (PLGA). This novel scaffold facilitates implementation of the conventional cell seeding process. The progress of cell growth can be observed in vitro by optical microscopy. The problems of becoming milky or completely opaque with the conventional PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds consisting of 47 µm × 80 µm pillared branches were produced. Results of cell culturing of bovine endothelial cells demonstrate that the cells adhere well and grow to surround each branch of the proposed pillared microvessel networks.

Keywords: femtosecond laser ablation, pillared microvessel scaffold, polylactic-co-glycolic acid, bovine endothelial cells

A Letter to the Editor has been published for this article.

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] View Full Text [HTML] 


Other articles by this author:

Electrochemical impedimetric biosensor based on a nanostructured polycarbonate substrate

Chen YS, Wu CC, Tsai JJ, Wang GJ

International Journal of Nanomedicine 2012, 7:133-140

Published Date: 6 January 2012

A novel nanostructured biosensor for the detection of the dust mite antigen Der p2

Tsai JJ, Bau IJ, Chen HT, Lin YT, Wang GJ

International Journal of Nanomedicine 2011, 6:1201-1208

Published Date: 13 June 2011

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Clinical issues of mucus accumulation in COPD

Osadnik CR, McDonald CF, Holland AE

International Journal of Chronic Obstructive Pulmonary Disease 2014, 9:301-302

Published Date: 25 March 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012


Cárdenas WH, Mamani JB, Sibov TT, Caous CA, Amaro E Jr, Gamarra LF

International Journal of Nanomedicine 2012, 7:5107-5108

Published Date: 21 September 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012


Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP

International Journal of Nanomedicine 2012, 7:1709-1710

Published Date: 30 March 2012

Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

Rao S, Song Y, Peddie F, Evans AM

International Journal of Nanomedicine 2011, 6:1245-1251

Published Date: 20 June 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010