Back to Journals » International Journal of Nanomedicine » Volume 12

Fabrication of large-pore mesoporous Ca-Si-based bioceramics for bone regeneration

Authors Zeng D, Zhang X, Wang X, Cao L, Zheng A, Du J, Li Y, Huang Q, Jiang X

Received 21 June 2017

Accepted for publication 26 September 2017

Published 15 November 2017 Volume 2017:12 Pages 8277—8287


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Linlin Sun

Deliang Zeng,1,2 Xingdi Zhang,3 Xiao Wang,1,2 Lingyan Cao,1 Ao Zheng,1,2 Jiahui Du,1,2 Yongsheng Li,3 Qingfeng Huang,1 Xinquan Jiang1,2

1Department of Prosthodontics, School of Medicine, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 2Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, School of Medicine, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 3Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China

Abstract: Our previous study revealed that mesoporous Ca-Si-based materials exhibited excellent osteoconduction because dissolved ions could form a layer of hydroxycarbonate apatite on the surface of the materials. However, the biological mechanisms underlying bone regeneration were largely unknown. The main aim of this study was to evaluate the osteogenic ability of large-pore mesoporous Ca-Si-based bioceramics (LPMSCs) by alkaline phosphatase assay, real-time PCR analysis, von Kossa, and alizarin red assay. Compared with large-pore mesoporous silica (LPMS), LPMSCs had a better effect on the osteogenic differentiation of dental pulp cells. LPMSC-2 and LPMSC-3 with higher calcium possessed better osteogenic abilities than LPMSC-1, which may be related to the calcium-sensing receptor pathway. Furthermore, the loading capacity for recombinant human platelet-derived growth factor-BB was satisfactory in LPMSCs. In vivo, the areas of new bone formation in the calvarial defect repair were increased in the LPMSC-2 and LPMSC-3 groups compared with the LPMSC-1 and LPMS groups. We concluded that LPMSC-2 and LPMSC-3 possessed both excellent osteogenic abilities and satisfactory loading capacities, which may be attributed to their moderate Ca/Si molar ratio. Therefore, LPMSCs with moderate Ca/Si molar ratio might be potential alterative grafts for craniomaxillofacial bone regeneration.

Keywords: mesoporous Ca-Si-based materials, dental pulp cells, rat calvarial defect

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]