Back to Journals » International Journal of Nanomedicine » Volume 7

Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin

Authors Yu J, Xie X, Zheng M, Yu L, Zhang L, Zhao J, Jiang D, Che X

Received 20 July 2012

Accepted for publication 17 August 2012

Published 21 September 2012 Volume 2012:7 Pages 5079—5090

DOI https://doi.org/10.2147/IJN.S36150

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Jingmou Yu,1 Xin Xie,1 Meirong Zheng,1 Ling Yu,2 Lei Zhang,1 Jianguo Zhao,1 Dengzhao Jiang,1 Xiangxin Che1

1Key Laboratory of Systems Biology Medicine of Jiangxi Province, College of Basic Medical Science, Jiujiang University, Jiujiang, 2Division of Nursing, 2nd Affiliated Hospital, Yichun University, Yichun, People's Republic of China

Background: Supramolecular micelles as drug-delivery vehicles are generally unable to enter the nucleus of nondividing cells. In the work reported here, nuclear localization signal (NLS)-modified polymeric micelles were studied with the aim of improving nuclear drug delivery.
Methods: In this research, cholesterol-modified glycol chitosan (CHGC) was synthesized. NLS-conjugated CHGC (NCHGC) was synthesized and characterized using proton nuclear magnetic resonance spectroscopy, dynamic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX), an anticancer drug with an intracellular site of action in the nucleus, was chosen as a model drug. DOX-loaded micelles were prepared by an emulsion/solvent evaporation method. The cellular uptake of different DOX formulations was analyzed by flow cytometry and confocal laser scanning microscopy. The cytotoxicity of blank micelles, free DOX, and DOX-loaded micelles in vitro was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in HeLa and HepG2 cells.
Results: The degree of substitution was 5.9 cholesterol and 3.8 NLS groups per 100 sugar residues of the NCHGC conjugate. The critical aggregation concentration of the NCHGC micelles in aqueous solution was 0.0209 mg/mL. The DOX-loaded NCHGC (DNCHGC) micelles were observed as being almost spherical in shape under transmission electron microscopy, and the size was determined as 248 nm by dynamic light scattering. The DOX-loading content of the DNCHGC micelles was 10.1%. The DOX-loaded micelles showed slow drug-release behavior within 72 hours in vitro. The DNCHGC micelles exhibited greater cellular uptake and higher amounts of DOX in the nuclei of HeLa cells than free DOX and DOX-loaded CHGC (DCHGC) micelles. The half maximal inhibitory concentration (IC50) values of free DOX, DCHGC, and DNCHGC micelles against HepG2 cells were 4.063, 0.591, and 0.171 µg/mL, respectively. Moreover, the IC50 values of free DOX (3.210 µg/mL) and the DCHGC micelles (1.413 µg/mL) against HeLa cells were nearly 6.96- and 3.07-fold (P < 0.01), respectively, higher than the IC50 value of the DNCHGC micelles (0.461 µg/mL).
Conclusion: The results of this study suggest that novel NCHGC micelles could be a potential carrier for nucleus-targeting delivery.

Keywords: polymeric micelles, drug delivery, nucleus-targeting delivery

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study

Alam S, Khan ZI, Mustafa G, Kumar M, Islam F, Bhatnagar A, Ahmad FJ

International Journal of Nanomedicine 2012, 7:5705-5718

Published Date: 9 November 2012

Long-term MRI tracking of dual-labeled adipose-derived stem cells homing into mouse carotid artery injury

Qin JB, Li KA, Li XX, Xie QS, Lin JY, Ye KC, Jiang ME, Zhang GX, Lu XW

International Journal of Nanomedicine 2012, 7:5191-5203

Published Date: 2 October 2012

Do calcifying nanoparticles really contain 16S rDNA?

Shiekh FA

International Journal of Nanomedicine 2012, 7:5051-5052

Published Date: 18 September 2012

Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

Chen DZ, Tang QS, Li XD, Zhou XJ, Zang J, Xue WQ, Xiang JY, Guo CQ

International Journal of Nanomedicine 2012, 7:4973-4982

Published Date: 14 September 2012

Targeted dual-color silica nanoparticles provide univocal identification of micrometastases in preclinical models of colorectal cancer

Soster M, Juris R, Bonacchi S, Genovese D, Montalti M, Rampazzo E, Zaccheroni N, Garagnani P, Bussolino F, Prodi L, Marchiò S

International Journal of Nanomedicine 2012, 7:4797-4807

Published Date: 5 September 2012

Corrigendum

Wu Q, Chu M

International Journal of Nanomedicine 2012, 7:4531-4532

Published Date: 15 August 2012

Actively-targeted LTVSPWY peptide-modified magnetic nanoparticles for tumor imaging

Jie L-Y, Cai L-L, Wang L-J, Ying X-Y, Yu R-S, Zhang M-M,Du Y-Z

International Journal of Nanomedicine 2012, 7:3981-3989

Published Date: 24 July 2012

Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal

Elsheikh MA, Elnaggar YS, Gohar EY, Abdallah OY

International Journal of Nanomedicine 2012, 7:3787-3802

Published Date: 18 July 2012

Writing 3D patterns of microvessels

Juodkazis S

International Journal of Nanomedicine 2012, 7:3701-3702

Published Date: 13 July 2012