Back to Journals » Journal of Experimental Pharmacology » Volume 13

Experimental Therapeutics for the Treatment of Osteoarthritis

Authors Schulze-Tanzil G

Received 12 November 2020

Accepted for publication 7 January 2021

Published 11 February 2021 Volume 2021:13 Pages 101—125

DOI https://doi.org/10.2147/JEP.S237479

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Professor Bal Lokeshwar


Gundula Schulze-Tanzil

Department of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Bavaria, Germany

Correspondence: Gundula Schulze-Tanzil Email gundula.schulze@pmu.ac.at

Abstract: Osteoarthritis (OA) therapy remains a large challenge since no causative treatment options are so far available. Despite some main pathways contributing to OA are identified its pathogenesis is still rudimentary understood. A plethora of therapeutically promising agents are currently tested in experimental OA research to find an opportunity to reverse OA-associated joint damage and prevent its progression. Hence, this review aims to summarize novelly emerging experimental approaches for OA. Due to the diversity of strategies shown only main aspects could be summarized here including herbal medicines, nanoparticular compounds, growth factors, hormones, antibody-, cell- and extracellular vesicle (EV)-based approaches, optimized tools for joint viscosupplementation, genetic regulators such as si- or miRNAs and promising combinations. An abundant multitude of compounds obtained from plants, environmental, autologous or synthetic sources have been identified with anabolic, anti-inflammatory, -catabolic and anti-apoptotic properties. Some ubiquitous signaling pathways such as wingless and Integration site-1 (Wnt), Sirtuin, Toll-like receptor (TLR), mammalian target of rapamycin (mTOR), Nuclear Factor (NF)-κB and complement are involved in OA and addressed by them. Hyaluronan (HA) provided benefit in OA since many decades, and novel HA formulations have been developed now with higher HA content and long-term stability achieved by cross-linking suitable to be combined with other agents such as components from herbals or chemokines to attract regenerative cells. pH- or inflammation-sensitive nanoparticular compounds could serve as versatile slow-release systems of active compounds, for example, miRNAs. Some light has been brought into the intimate regulatory network of small RNAs in the pathogenesis of OA which might be a novel avenue for OA therapy in future. Attraction of autologous regenerative cells by chemokines and exosome-based treatment strategies could also innovate OA therapy.

Keywords: osteoarthritis, chondrocyte, cytokine, chemokine, hyaluronan, nanoparticle, exosome, mesenchymal stromal cell, miRNA

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]