Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 13

Exercise capacity in COPD patients with exercise-induced pulmonary hypertension

Authors Skjørten I, Hilde JM, Melsom MN, Hisdal J, Hansteen V, Steine K, Humerfelt S

Received 31 December 2017

Accepted for publication 8 May 2018

Published 31 October 2018 Volume 2018:13 Pages 3599—3610

DOI https://doi.org/10.2147/COPD.S161175

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Charles Downs

Peer reviewer comments 3

Editor who approved publication: Dr Richard Russell


Ingunn Skjørten,1,2 Janne Mykland Hilde,3 Morten Nissen Melsom,1 Jonny Hisdal,4 Viggo Hansteen,5 Kjetil Steine,2,3 Sjur Humerfelt6

1Department of Pulmonary Medicine, LHL Hospital Gardermoen, Jessheim, 2Faculty of Medicine, University of Oslo, Oslo, 3Department of Cardiology, Akershus University Hospital, Lørenskog, 4Section of Vascular Investigations, Oslo University Hospital-Aker, 5Department of Cardiology, Oslo University Hospital-Aker, 6Clinic of Allergology and Respiratory Medicine, Oslo, Norway

Background: Pulmonary hypertension (PH) in patients with COPD is associated with reduced exercise capacity. A subgroup of COPD patients has normal mean pulmonary artery pressure (mPAP) at rest, but develops high mPAP relative to cardiac output (CO) during exercise, a condition we refer to as exercise-induced pulmonary hypertension (EIPH). We hypothesized that COPD patients with EIPH could be identified by cardiopulmonary exercise test (CPET) and that these patients have lower exercise capacity and more abnormal CPET parameters compared to COPD patients with normal hemodynamic exercise response.
Methods: Ninety-three stable outpatients with COPD underwent right heart catheterization with the measurement of mPAP, CO, and capillary wedge pressure at rest and during supine exercise. Resting mPAP <25 mmHg with ΔmPAP/ΔCO slope above or below 3 mmHg/L/min were defined as COPD-EIPH and COPD-normal, respectively. Pulmonary function tests and CPET with arterial blood gases were performed. Linear mixed models were fitted to estimate differences between the groups with adjustment for gender, age, and airflow obstruction.
Results: EIPH was observed in 45% of the study population. Maximal workload was lower in COPD-EIPH compared to COPD-normal, whereas other CPET measurements at peak exercise in % predicted values were similar between the two groups. After adjustment for gender, age, and airflow obstruction, patients with COPD-EIPH showed significantly greater increase in oxygen uptake, ventilation, respiratory frequency, heart rate, and lactate with increasing work load, as well as more reduction in pH compared to those with normal hemodynamic responses.
Conclusion: COPD-EIPH could not be discriminated from COPD-normal by CPET. However, COPD-EIPH experienced a higher cost of exercise in terms of higher oxygen uptake, ventilation, respiratory frequency, heart rate, and lactate for a given increase in workload compared to COPD-normal.

Keywords:
COPD, pulmonary hypertension, right heart catheterization, cardiopulmonary exercise test

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]