Back to Journals » Advances and Applications in Bioinformatics and Chemistry » Volume 1

Evolution of a domain conserved in microtubule-associated proteins of eukaryotes

Authors Rajangam AS, Yang H, Teeri TT, Arvestad L

Published 23 September 2008 Volume 2008:1 Pages 51—69

DOI https://doi.org/10.2147/AABC.S3211

Review by Single anonymous peer review

Peer reviewer comments 3



Alex S Rajangam1, Hongqian Yang2, Tuula T Teeri1, Lars Arvestad2

1KTH Biotechnology, Swedish Center for Biomimetic Fiber Engineering, AlbaNova, Stockholm, Sweden; 2Stockholm Bioinformatics Center and School of Computer Science and Communication, Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Abstract: The microtubule network, the major organelle of the eukaryotic cytoskeleton, is involved in cell division and differentiation but also with many other cellular functions. In plants, microtubules seem to be involved in the ordered deposition of cellulose microfibrils by a so far unknown mechanism. Microtubule-associated proteins (MAP) typically contain various domains targeting or binding proteins with different functions to microtubules. Here we have investigated a proposed microtubule-targeting domain, TPX2, first identified in the Kinesin-like protein 2 in Xenopus. A TPX2 containing microtubule binding protein, PttMAP20, has been recently identified in poplar tissues undergoing xylogenesis. Furthermore, the herbicide 2,6-dichlorobenzonitrile (DCB), which is a known inhibitor of cellulose synthesis, was shown to bind specifically to PttMAP20. It is thus possible that PttMAP20 may have a role in coupling cellulose biosynthesis and the microtubular networks in poplar secondary cell walls. In order to get more insight into the occurrence, evolution and potential functions of TPX2-containing proteins we have carried out bioinformatic analysis for all genes so far found to encode TPX2 domains with special reference to poplar PttMAP20 and its putative orthologs in other plants.

Keywords: TPX2 domain, MAP20, evolution, microtubule, cellulose, bioinformatics

Creative Commons License © 2008 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.