Back to Journals » International Journal of Nanomedicine » Volume 13

Evaluation of the antibacterial activity of tilmicosin-SLN against Streptococcus agalactiae: in vitro and in vivo studies

Authors Zhu L, Cao X, Xu Q, Su J, Li X, Zhou W

Received 14 March 2018

Accepted for publication 11 June 2018

Published 17 August 2018 Volume 2018:13 Pages 4747—4755

DOI https://doi.org/10.2147/IJN.S168179

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Thiruganesh Ramasamy

Peer reviewer comments 3

Editor who approved publication: Dr Linlin Sun


Luyan Zhu,1 Xiaoxia Cao,1 Qinxin Xu,1 Jing Su,1 Xihe Li,2,3 Wenzhong Zhou1

1Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China; 2Research Center for Animal Genetic Resources of Mongolian Plateau School of Life Sciences, Inner Mongolia University, Hohhot, 010021, People’s Republic of China; 3Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Saikexing Breeding and Reproductive Biotechnology Co. Ltd., Hohhot, 011517, People’s Republic of China

Background: Streptococcus and Staphylococcus are the major contagious organisms causing dairy cow mastitis. Our previous studies have demonstrated that solid lipid nanoparticles (SLNs) can effectively enhance the antimicrobial activity of tilmicosin against Staphylococcus. This study aimed to evaluate the antibacterial efficacy of tilmicosin-loaded SLN (Til-SLN) against Streptococcus agalactiae.
Methods: Til-SLN was prepared using a hot homogenization and ultrasonication method as described previously. Til-SLN was labeled with rhodamine B for nanoparticle tracking. In vitro antibacterial experiments were carried out by broth dilution technique. Pharmacokinetics of the drug and distribution of the nanoparticles in mammary gland were studied after subcutaneous injection in Kunming mice. The therapeutic study was conducted in a mouse mastitis model infected with S. agalactiae.
Results: The results showed that the diameter, polydispersity index, zeta potential, encapsulation efficiency, and loading capacity of the nanoparticles were not significantly affected by fluorescence labeling. Til-SLN showed a sustained and enhanced antibacterial activity in vitro. Til-SLN maintained a sustained drug concentration above 17 µg/g for at least 6 days in the mammary gland, as compared with only 3 days for the same amount of tilmicosin phosphate solution. The mean residence time and elimination half-life (T1/2) of Til-SLN were much longer than those of tilmicosin phosphate solution. Most of the nanoparticles remained at the injection site and a few were transferred to the mammary glands, indicating that the drug was slowly released at the injection site and then distributed to the mammary glands. SLN significantly enhanced the therapeutic efficacy of tilmicosin as determined by lower colony forming unit counts.
Conclusion: These results demonstrate that SLN could effectively enhance the antibacterial activity of tilmicosin against Streptococcus.

Keywords: tilmicosin, solid lipid nanoparticles, Streptococcus agalactiae, mastitis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]