Back to Journals » International Journal of Nanomedicine » Volume 7

Ether lipid vesicle-based antigens impart protection against experimental listeriosis

Authors Ansari, Zubair S, Tufail, Ahmed, Khan, Qadari, Owais M

Received 6 September 2011

Accepted for publication 27 September 2011

Published 6 June 2012 Volume 2012:7 Pages 2433—2447

DOI https://doi.org/10.2147/IJN.S25875

Review by Single anonymous peer review

Peer reviewer comments 2



Mairaj Ahmed Ansari,1 Swaleha Zubair,2 Saba Tufail,1 Ejaj Ahmad,1 Mohsin Raza Khan,1 Zainuddin Quadri,1 Mohammad Owais,1
1Interdisciplinary Biotechnology Unit, 2Women's College, Aligarh Muslim University, Aligarh, UP, India

Background: Incidence of food-borne infections from Listeria monocytogenes, a parasite that has adapted intracellular residence to avoid antibody onslaught, has increased dramatically in the past few years. The apparent lack of an effective vaccine that is capable of evoking the desired cytotoxic T cell response to obliterate this intracellular pathogen has encouraged the investigation of alternate prophylactic strategies. It should also be noted that Archaebacteria (Archae) lipid-based adjuvants enhance the efficacy of subunit vaccines. In the present study, the adjuvant properties of archaeosomes (liposomes prepared from total polar lipids of archaebacteria, Halobacterium salinarum) combined with immunogenic culture supernatant antigens of L. monocytogenes have been exploited in designing a vaccine candidate against experimental listeriosis in murine model.
Methods: Archaeosome-entrapped secretory protein antigens (SAgs) of L. monocytogenes were evaluated for their immunological responses and tendency to deplete bacterial burden in BALB/c mice challenged with sublethal listerial infection. Various immunological studies involving cytokine profiling, lymphocyte proliferation assay, detection of various surface markers (by flowcytometric analysis), and antibody isotypes (by enzyme-linked immunosorbent assay) were used for establishing the vaccine potential of archaeosome-entrapped secretory proteins.
Results: Immunization schedule involving archaeosome-encapsulated SAgs resulted in upregulation of Th1 cytokine production along with boosted memory in BALB/c mice. It also showed protective effect by reducing listerial burden in various vital organs (liver and spleen) of the infected mice. However, the soluble form of the antigens (SAgs) and their physical mixture with sham (empty) archaeosomes, besides showing feeble Th1 response, were unable to protect the animals against virulent listerial infection.
Conclusion: On the basis of the evidence provided by the current data, it is inferred that archaeosome-entrapped SAgs formulation not only enhances cytotoxic T cell response but also helps in the clearance of pathogens and thereby increases the survival of the immunized animals.

Keywords: archaeosome, culture supernatant, antigen-presenting cells, Th1 cytokines, co-stimulatory markers, lymphocyte proliferation, protection studies

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.