Back to Journals » Pharmacogenomics and Personalized Medicine » Volume 4

ERCC1 and XRCC1 as biomarkers for lung and head and neck cancer

Authors Vaezi, Feldman, Niedernhofer L

Published 20 July 2011 Volume 2011:4 Pages 47—63

DOI https://doi.org/10.2147/PGPM.S20317

Review by Single anonymous peer review

Peer reviewer comments 5



Alec Vaezi1,2, Chelsea H Feldman2, Laura J Niedernhofer2,3
1Department of Otolaryngology and Head and Neck Surgery, University of Pittsburgh School of Medicine, 2University of Pittsburgh Cancer Institute, 3Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Cancer Institute, Pittsburgh, PA, USA

Abstract: Advanced stage non-small cell lung cancer and head and neck squamous cell carcinoma are both treated with DNA damaging agents including platinum-based compounds and radiation therapy. However, at least one quarter of all tumors are resistant or refractory to these genotoxic agents. Yet the agents are extremely toxic, leading to undesirable side effects with potentially no benefit. Alternative therapies exist, but currently there are no tools to predict whether the first-line genotoxic agents will work in any given patient. To maximize therapeutic success and limit unnecessary toxicity, emerging clinical trials aim to inform personalized treatments tailored to the biology of individual tumors. Worldwide, significant resources have been invested in identifying biomarkers for guiding the treatment of lung and head and neck cancer. DNA repair proteins of the nucleotide excision repair pathway (ERCC1) and of the base excision repair pathway (XRCC1), which are instrumental in clearing DNA damage caused by platinum drugs and radiation, have been extensively studied as potential biomarkers of clinical outcomes in lung and head and neck cancers. The results are complex and contradictory. Here we summarize the current status of single nucleotide polymorphisms, mRNA, and protein expression of ERCC1 and XRCC1 in relation to cancer risk and patient outcomes.

Keywords: nucleotide excision repair, base excision repair, DNA damage, DNA repair, chemotherapy, NSCLC, HNSCC, single nucleotide polymorphism

Creative Commons License © 2011 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.