Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery

Authors Lee SJ, Jeong YI, Park HK, Kang DH, Oh JS, Lee SG, Lee HC

Received 22 April 2015

Accepted for publication 18 July 2015

Published 28 August 2015 Volume 2015:10(1) Pages 5489—5503

DOI https://doi.org/10.2147/IJN.S87145

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Govarthanan Muthusamy

Peer reviewer comments 3

Editor who approved publication: Dr Thomas J Webster

Sang Joon Lee,1,* Young-Il Jeong,2,* Hyung-Kyu Park,3 Dae Hwan Kang,2,4 Jong-Suk Oh,3 Sam-Gyu Lee,5 Hyun Chul Lee3

1Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 2Biomedical Research Institute, Pusan National University Hospital, Busan, 3Department of Microbiology, Chonnam National University Medical School, Gwangju, 4Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam, 5Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea

*These authors contributed equally to this work

Background: Since cancer cells are normally over-expressed cathepsin B, we synthesized dendrimer-methoxy poly(ethylene glycol) (MPEG)-doxorubicin (DOX) conjugates using a cathepsin B-cleavable peptide for anticancer drug targeting.
Methods: Gly-Phe-Leu-Gly peptide was conjugated with the carboxylic acid end groups of a dendrimer, which was then conjugated with MPEG amine and doxorubicin by aid of carbodiimide chemistry (abbreviated as DendGDP). Dendrimer-MPEG-DOX conjugates without Gly-Phe-Leu-Gly peptide linkage was also synthesized for comparison (DendDP). Nanoparticles were then prepared using a dialysis procedure.
Results: The synthesized DendGDP was confirmed with 1H nuclear magnetic resonance spectroscopy. The DendDP and DendGDP nanoparticles had a small particle size of less than 200 nm and had a spherical morphology. DendGDP had cathepsin B-sensitive drug release properties while DendDP did not show cathepsin B sensitivity. Further, DendGDP had improved anticancer activity when compared with doxorubicin or DendDP in an in vivo CT26 tumor xenograft model, ie, the volume of the CT26 tumor xenograft was significantly inhibited when compared with xenografts treated with doxorubicin or DendDP nanoparticles. The DendGDP nanoparticles were found to be relatively concentrated in the tumor tissue and revealed stronger fluorescence intensity than at other body sites while doxorubicin and DendDP nanoparticles showed strong fluorescence intensity in the various organs, indicating that DendGDP has cathepsin B sensitivity.
Conclusion: DendGDP is sensitive to cathepsin B in tumor cells and can be used as a cathepsin B-responsive drug targeting strategy. We suggest that DendGDP is a promising vehicle for cancer cell targeting.

Keywords: cathepsin B, CT26 cell, enzyme-sensitive dendrimer, tumor targeting, tetra peptide

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Vorinostat-eluting poly(DL-lactide-co-glycolide) nanofiber-coated stent for inhibition of cholangiocarcinoma cells

Kwak TW, Lee HL, Song YH, Kim C, Kim JS, Seo SJ, Jeong YI, Kang DH

International Journal of Nanomedicine 2017, 12:7669-7680

Published Date: 17 October 2017

Anticancer activities of epigallocatechin-3-gallate against cholangiocarcinoma cells

Kwak TW, Park SB, Kim HJ, Jeong YI, Kang DH

OncoTargets and Therapy 2017, 10:137-144

Published Date: 22 December 2016

Release of tissue inhibitor of metalloproteinase-2 from alginate microcapsule encapsulating genetically engineered cells

Kim YS, Jeong YI, Jin SG, Pei J, Wen M, Kim IY, Moon KS, Jung TY, Ryu HH, Jung S

International Journal of Nanomedicine 2013, 8:4351-4359

Published Date: 6 November 2013

Dextran-b-poly(L-histidine) copolymer nanoparticles for pH-responsive drug delivery to tumor cells

Hwang JH, Choi CW, Kim HW, Kim DH, Kwak TW, Lee HM, Kim CH, Chung CW, Jeong YI, Kang DH

International Journal of Nanomedicine 2013, 8:3197-3207

Published Date: 21 August 2013

Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer

Jeong YI, Kim DH, Chung CW, Yoo JJ, Choi KH, Kim CH, Ha SH, Kang DH

International Journal of Nanomedicine 2011, 6:1415-1427

Published Date: 6 July 2011

Readers of this article also read:

Methotrexate-loaded lipid-core nanocapsules are highly effective in the control of inflammation in synovial cells and a chronic arthritis model

Boechat AL, Oliveira CP, Tarragô AM, Costa AG, Malheiro A, Guterres SS, Pohlmann AR

International Journal of Nanomedicine 2015, 10:6603-6614

Published Date: 22 October 2015

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Molecular targets in arthritis and recent trends in nanotherapy

Roy K, Kanwar RK, Kanwar JR

International Journal of Nanomedicine 2015, 10:5407-5420

Published Date: 26 August 2015

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010