Back to Journals » International Journal of Nanomedicine » Volume 7

Enhancing the specificity and efficiency of polymerase chain reaction using polyethyleneimine-based derivatives and hybrid nanocomposites

Authors Tong, Cao, Wen, Guo R, Shen, Wang J, Shi X

Received 7 December 2011

Accepted for publication 9 January 2012

Published 22 February 2012 Volume 2012:7 Pages 1069—1078

DOI https://doi.org/10.2147/IJN.S28947

Review by Single-blind

Peer reviewer comments 2


Weiwei Tong1,2, Xueyan Cao2, Shihui Wen2, Rui Guo2, Mingwu Shen2, Jianhua Wang3, Xiangyang Shi1,2,4

1State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 2College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 3Department of Biochemistry and Molecular Cell Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China; 4Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal

Abstract: There is a general necessity to improve the specificity and efficiency of the polymerase chain reaction (PCR), and exploring the PCR-enhancing mechanism still remains a great challenge. In this paper we report the use of branched polyethyleneimine (PEI)-based derivatives and hybrid nanocomposites as a novel class of enhancers to improve the specificity and efficiency of a nonspecific PCR system. We show that the surface-charge polarity of PEI and PEI derivatives plays a major role in their effectiveness to enhance the PCR. Positively charged amine-terminated pristine PEI, partially (50%) acetylated PEI (PEI-Ac50), and completely acetylated PEI (PEI-Ac) are able to improve PCR efficiency and specificity with an optimum concentration order of PEI < PEI-Ac50 < PEI-Ac, whereas negatively charged carboxyl-terminated PEI (PEI-SAH; SAH denotes succinamic acid groups) and neutralized PEI modified with both polyethylene glycol (PEG) and acetyl (Ac) groups (PEI-PEG-Ac) are unable to improve PCR specificity and efficiency even at concentrations three orders of magnitude higher than that of PEI. Our data clearly suggests that the PCR-enhancing effect is primarily based on the interaction between the PCR components and the PEI derivatives, where electrostatic interaction plays a major role in concentrating the PCR components locally on the backbones of the branched PEI. In addition, multiwalled carbon nanotubes modified with PEI and PEI-stabilized gold nanoparticles are also able to improve the PCR specificity and efficiency with an optimum PEI concentration less than that of the PEI alone, indicating that the inorganic component of the nanocomposites may help improve the interaction between PEI and the PCR components. The developed PEI-based derivatives or nanocomposites may be used as efficient additives to enhance other PCR systems for different biomedical applications.

Keywords: polyethyleneimine, gold nanoparticles, multiwalled carbon nanotubes, nanocomposites, polymerase chain reaction, specificity, efficiency

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]