Back to Journals » International Journal of Nanomedicine » Volume 6

Enhanced transdermal delivery of evodiamine and rutaecarpine using microemulsion

Authors Zhong YT, Zhao JH, Zhang SJ, Zhong YZ, Wang Z, Liu Y, Shi F, Feng NP

Published 21 October 2011 Volume 2011:6 Pages 2469—2482

DOI https://doi.org/10.2147/IJN.S25258

Review by Single-blind

Peer reviewer comments 3

Yong-Tai Zhang, Ji-Hui Zhao, Su-Juan Zhang, Yang-Zi Zhong, Zhi Wang, Ying Liu, Feng Shi, Nian-Ping Feng
School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China

Objective: The purpose of this study was to improve skin permeation of evodiamine and rutaecarpine for transdermal delivery with microemulsion as vehicle and investigate real-time cutaneous absorption of the drugs via in vivo microdialysis.
Methods: Pseudoternary phase diagrams were constructed to evaluate microemulsion regions with various surfactants and cosurfactants. Nine formulations of oil in water microemulsions were selected as vehicles for assessing skin permeation of evodiamine and rutaecarpine in ex vivo transdermal experiments. With a microdialysis hollow fiber membrane implanted in the skin beneath the site of topical drug administration, dialysis sampling was maintained for 10 hours and the samples were detected directly by high performance liquid chromatography. Real-time concentrations of the drugs in rat skin were investigated and compared with those of conventional formulations, such as ointment and tincture. Furthermore, the drugs were applied to various regions of the skin using microemulsion as vehicle.
Results: In ex vivo transdermal experiments, cutaneous fluxes of evodiamine and rutaecarpine microemulsions were 2.55-fold to 11.36-fold and 1.17-fold to 6.33-fold higher, respectively, than those of aqueous suspensions. Different drug loadings, microemulsion water content, and transdermal enhancers markedly influenced the permeation of evodiamine and rutaecarpine. In microemulsion application with in vivo microdialysis, the maximum concentration of the drugs (evodiamine: 18.23 ± 1.54 ng/mL; rutaecarpine: 16.04 ± 0.69 ng/mL) were the highest, and the area under the curve0–t of evodiamine and rutaecarpine was 1.52-fold and 2.27-fold higher than ointment and 3.06-fold and 4.23-fold higher than tincture, respectively. A greater amount of drugs penetrated through and was absorbed by rat abdominal skin than shoulder and chest, and a reservoir in the skin was found to supply drugs even after the microemulsion was withdrawn.
Conclusion: Compared to conventional formulations, higher cutaneous fluxes of evodiamine and rutaecarpine were achieved with microemulsion. Based on this novel transdermal delivery, the transdermal route was effective for the administration of the two active alkaloids.

Keywords: microemulsion, evodiamine, rutaecarpine, transdermal delivery, microdialysis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Preparation and evaluation of microemulsion-based transdermal delivery of total flavone of rhizoma arisaematis

Shen LN, Zhang YT, Wang Q, Xu L, Feng NP

International Journal of Nanomedicine 2014, 9:3453-3464

Published Date: 22 July 2014

In vitro cellular uptake of evodiamine and rutaecarpine using a microemulsion

Zhang YT, Huang ZB, Zhang SJ, Zhao JH, Wang Z, Liu Y, Feng NP

International Journal of Nanomedicine 2012, 7:2465-2472

Published Date: 18 May 2012

Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil

Shi F, Zhao JH, Liu Y, Wang Z, Zhang YT, Feng NP

International Journal of Nanomedicine 2012, 7:2033-2043

Published Date: 17 April 2012

Corrigendum

Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP

International Journal of Nanomedicine 2012, 7:1709-1710

Published Date: 30 March 2012

RGD-modified poly(D,L-lactic acid) nanoparticles enhance tumor targeting of oridonin

Xu J, Zhao JH, Liu Y, Feng NP, Zhang YT

International Journal of Nanomedicine 2012, 7:211-219

Published Date: 9 January 2012

Microemulsion-based novel transdermal delivery system of tetramethylpyrazine: preparation and evaluation in vitro and in vivo

Zhao JH, Ji L, Wang H, Chen ZQ, Zhang YT, Liu Y, Feng NP

International Journal of Nanomedicine 2011, 6:1611-1619

Published Date: 9 August 2011

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Servant leadership: a case study of a Canadian health care innovator

Vanderpyl TH

Journal of Healthcare Leadership 2012, 4:9-16

Published Date: 16 February 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010