Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Enhanced stability and antibacterial efficacy of a traditional Chinese medicine-mediated silver nanoparticle delivery system

Authors Sun W, Qu D, Ma Y, Chen Y, Liu C, Zhou J

Received 24 July 2014

Accepted for publication 3 September 2014

Published 26 November 2014 Volume 2014:9(1) Pages 5491—5502

DOI https://doi.org/10.2147/IJN.S71670

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Thomas J Webster

Wenjie Sun,1,2,* Ding Qu,1,* Yihua Ma,1 Yan Chen,1,2 Congyan Liu,1 Jing Zhou1

1Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, 2Department of Pharmaceutics, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China

*These authors contributed equally to this work

Abstract: Silver nanoparticles (AgNPs) are widely used as antibacterial products in various fields. Recent studies have suggested that AgNPs need an appropriate stabilizer to improve their stability. Some antibacterial traditional Chinese medicines (TCMs) contain various reductive components, which can not only stabilize AgNPs but also enhance their antimicrobial activity. In this study, we developed a series of novel AgNPs using a TCM extract as a stabilizer, reducing agent, and antimicrobial agent (TCM-AgNPs). A storage stability investigation of the TCM-AgNPs suggested a significant improvement when compared with bare AgNPs. Further, conjugation of TCMs onto the AgNP surface resulted in stronger antimicrobial potency on antibacterial evaluation using Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus with minimum inhibitory concentration 50% (MIC50) ratios (and minimum bactericidal concentration 90% [MBC90] ratios) of AgNPs to respective TCM-AgNPs as assessment indices. Among these, P. cuspidatum Sieb. et-conjugated AgNPs (P.C.-AgNPs) had the advantage of a combination of TCMs and AgNPs and was studied in detail with regard to its synthesis and characterization. The extraction time, reaction temperature, and concentrations of AgNO3 and Polygonum cuspidatum Sieb. et extract were critical factors in the preparation of P.C.-AgNPs. Further, the results of X-ray diffraction and Fourier transform infrared spectroscopy indicated successful preparation of P.C.-AgNPs. In representative studies, P.C.-AgNPs showed a well-defined spherical shape, a homogeneous small particle size (36.78 nm), a narrow polydispersity index (0.105), and a highly negative zeta potential (-23.6 mV) on transmission electron microscopy and dynamic light scattering. These results indicate that TCM-AgNPs have a potential role as antibacterial agents in the clinic setting.

Keywords: traditional Chinese medicine, extract, silver nanoparticles, stability, antibacterial, Polygonum cuspidatum Sieb. et

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]