Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Enhanced regenerative healing efficacy of a highly skin-permeable growth factor nanocomplex in a full-thickness excisional mouse wound model

Authors Bae I, Park JW, Kim D

Received 25 May 2014

Accepted for publication 19 July 2014

Published 25 September 2014 Volume 2014:9(1) Pages 4551—4567

DOI https://doi.org/10.2147/IJN.S68399

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Il-Hong Bae,1 Jin Woo Park,2 Dae-Yong Kim1

1College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; 2College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea

Abstract: Exogenous administration of growth factors has potential benefits in wound ­healing; however, limited percutaneous absorption, inconsistent efficacy, and the need for high doses have hampered successful clinical use. To overcome these restrictions, we focused on the development of a topical formulation composed of highly skin-permeable multimeric nanocomplex of growth factors. In the present study, we fused low-molecular-weight protamine (LMWP) with epidermal growth factor (EGF), insulin-like growth factor 1 (IGF-I), and platelet-derived growth factor A ligand (PDGF-A) (producing recombinant [r]LMWP-EGF, rLMWP-IGF-I, and rLMWP-PDGF-A, respectively) via genetic modification. Then, we used in vitro cell proliferation studies to assess the biological activity and the benefits of the combination. The LMWP-conjugated growth factors were complexed with low-molecular-weight heparin (LMWH) and formulated with Poloxamer 188 as a delivery vehicle. After confirming the enhanced skin permeability, in vivo studies were performed to assess whether the LMWP-conjugated growth factor nanocomplex formulations accelerated the healing of full-thickness wounds in mice. The LMWP-conjugated growth factors were biologically equivalent to their native forms, and their combination induced greater fibroblast proliferation. rLMWP-EGF showed significantly enhanced permeability and cumulative permeation, and the rates for rLMWP-IGF-I and rLMWP-PDGF-A, across excised mouse skin, were 124% and 164% higher, respectively, than for the native forms. The LMWP-fused growth factors resulted in formation of nanocomplexes (23.51±1.12 nm in diameter) in combination with LMWH. Topical delivery of growth factors fused with LMWP accelerated wound re-epithelialization significantly, accompanied by the formation of healthy granulation tissue within 9 days compared with a free–growth factor complex or vehicle. Thus, the LMWP-conjugated growth factor nanocomplex can induce rapid, comprehensive healing and may be a candidate wound-healing therapeutic.

Keywords: epidermal growth factor, insulin-like growth factor, platelet-derived growth factor

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]