Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Enhanced magnetic resonance imaging and staining of cancer cells using ferrimagnetic H-ferritin nanoparticles with increasing core size

Authors Cai Y, Cao CQ, He XQ, Yang CY, Tian LX, Zhu RX, Pan YX

Received 30 December 2014

Accepted for publication 16 February 2015

Published 1 April 2015 Volume 2015:10(1) Pages 2619—2634

DOI https://doi.org/10.2147/IJN.S80025

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Editor who approved publication: Dr Lei Yang

Yao Cai,1–3 Changqian Cao,1,2 Xiaoqing He,1 Caiyun Yang,1–3 Lanxiang Tian,1,2 Rixiang Zhu,2 Yongxin Pan1,2

1France–China Bio-Mineralization and Nano-Structures Laboratory, 2Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 3University of Chinese Academy of Sciences, Beijing, People’s Republic of China

Purpose: This study is to demonstrate the nanoscale size effect of ferrimagnetic H-ferritin (M-HFn) nanoparticles on magnetic properties, relaxivity, enzyme mimetic activities, and application in magnetic resonance imaging (MRI) and immunohistochemical staining of cancer cells.
Materials and methods: M-HFn nanoparticles with different sizes of magnetite cores in the range of 2.7–5.3 nm were synthesized through loading different amounts of iron into recombinant human H chain ferritin (HFn) shells. Core size, crystallinity, and magnetic properties of those M-HFn nanoparticles were analyzed by transmission electron microscope and low-temperature magnetic measurements. The MDA-MB-231 cancer cells were incubated with synthesized M-HFn nanoparticles for 24 hours in Dulbecco’s Modified Eagle’s Medium. In vitro MRI of cell pellets after M-HFn labeling was performed at 7 T. Iron uptake of cells was analyzed by Prussian blue staining and inductively coupled plasma mass spectrometry. Immunohistochemical staining by using the peroxidase-like activity of M-HFn nanoparticles was carried out on MDA-MB-231 tumor tissue paraffin sections.
Results: The saturation magnetization (Ms), relaxivity, and peroxidase-like activity of synthesized M-HFn nanoparticles were monotonously increased with the size of ferrimagnetic cores. The M-HFn nanoparticles with the largest core size of 5.3 nm exhibit the strongest saturation magnetization, the highest peroxidase activity in immunohistochemical staining, and the highest r2 of 321 mM-1 s-1, allowing to detect MDA-MB-231 breast cancer cells as low as 104 cells mL-1.
Conclusion: The magnetic properties, relaxivity, and peroxidase-like activity of M-HFn nanoparticles are size dependent, which indicates that M-HFn nanoparticles with larger magnetite core can significantly enhance performance in MRI and staining of cancer cells.

Keywords: magnetic nanoparticles, magnetoferritin, peroxidase-like activity, magnetic resonance imaging, cancer cells

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Monitoring cancer stem cells: insights into clinical oncology

Lin SC, Xu YC, Gan ZH, Han K, Hu HY, Yao Y, Huang MZ, Min DL

OncoTargets and Therapy 2016, 9:731-740

Published Date: 11 February 2016

Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials

Van Heertum RL, Scarimbolo R, Ford R, Berdougo E, O’Neal M

Drug Design, Development and Therapy 2015, 9:5215-5223

Published Date: 11 September 2015

Tracking the 2015 Gastrointestinal Cancers Symposium: bridging cancer biology to clinical gastrointestinal oncology

Aprile G, Leone F, Giampieri R, Casagrande M, Marino D, Faloppi L, Cascinu S, Fasola G, Scartozzi M

OncoTargets and Therapy 2015, 8:1149-1156

Published Date: 22 May 2015

Effect of blood type on survival of Chinese patients with esophageal squamous cell carcinoma

Qin J, Wu SG, Sun JY, Lin HX, He ZY, Li Q

OncoTargets and Therapy 2015, 8:947-953

Published Date: 23 April 2015

Brachytherapy in the treatment of cervical cancer: a review

Banerjee R, Kamrava M

International Journal of Women's Health 2014, 6:555-564

Published Date: 28 May 2014

Palliative nursing care for children and adolescents with cancer

Foster TL, Bell CJ, McDonald CF, Harris JS, Gilmer MJ

Nursing: Research and Reviews 2012, 2:17-25

Published Date: 15 June 2012

Multidisciplinary care in pediatric oncology

Cantrell MA, Ruble K

Journal of Multidisciplinary Healthcare 2011, 4:171-181

Published Date: 30 May 2011