Back to Journals » International Journal of Nanomedicine » Volume 11

Enhanced dissolution and oral absorption of tacrolimus by supersaturable self-emulsifying drug delivery system

Authors Lee DR, Ho MJ, Jung HJ, Cho HR, Park JS, Yoon S, Choi YS, Choi YW, Oh C, Kang MJ

Received 22 December 2015

Accepted for publication 29 January 2016

Published 18 March 2016 Volume 2016:11 Pages 1109—1117


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Thomas Webster

Dae Ro Lee,1 Myoung Jin Ho,1 Hyuck Jun Jung,1 Ha Ra Cho,1 Jun Seo Park,1 Suk-Hyun Yoon,2 Yong Seok Choi,1 Young Wook Choi,3 Chung-Hun Oh,2,4,5 Myung Joo Kang1

1College of Pharmacy, 2Department of Medical Laser, Graduate School, Dankook University, Dongnam-gu, Choenan, Chungnam, 3College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, 4Department of Oral Physiology, College of Dentistry, Dankook University, 5Abel Medi-Tech Inc., Dongnam-gu, Cheonan, Chungnam, Korea

Abstract: A new Soluplus (polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer)-based supersaturable self-emulsifying drug delivery system (S-SEDDS) was formulated to enhance oral absorption of tacrolimus (FK506) with minimal use of oil, surfactant, and cosurfactant. A high payload supersaturable system (S-SEDDS) was prepared by incorporating Soluplus, as a precipitation inhibitor, to SEDDS consisting of Capmul MCM, Cremophor EL, and Transcutol (FK506:vehicle:Soluplus =1:15:1). In vitro dissolution profile and in vitro pharmacokinetic aspect of S-SEDDS in rats were comparatively evaluated with those of conventional SEDDS formulas containing four times greater content of vehicle components (FK506:vehicle =1:60). Both formulations formed spherical drug-loaded microemulsion <70 nm in size when in contact with aqueous medium. In an in vitro dissolution test in a nonsink condition, the amphiphilic polymer noticeably retarded drug precipitation and maintained >80% of accumulated dissolution rate for 24 hours, analogous to that from conventional SEDDS. Moreover, pharmacokinetic parameters of the maximum blood concentration and area under the curve from S-SEDDS formula in rats were not statistically different (P>0.05) than those of conventional SEDDS. The results suggest that the Soluplus-based supersaturable system can be an alternative to achieve a comparable in vitro dissolution profile and in vivo oral absorption with conventional SEDDS, with minimal use of vehicle ingredients.

Keywords: tacrolimus, supersaturation, precipitation inhibitor, Soluplus, microemulsion, oral bioavailability

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]