Back to Journals » International Journal of Nanomedicine » Volume 7

Engineering of silicon surfaces at the micro- and nanoscales for cell adhesion and migration control

Authors Torres-Costa, Martínez-Muñoz, Sånchez-Vaquero, Muñoz Noval A, Gonzålez-Méndez L, Punzón-Quijorna, Gallach-Pérez, Manso-Silvån, Climent-Font, García-Ruiz, Martín-Palma RJ

Received 28 October 2011

Accepted for publication 24 November 2011

Published 3 February 2012 Volume 2012:7 Pages 623—630

DOI https://doi.org/10.2147/IJN.S27745

Review by Single-blind

Peer reviewer comments 3

Vicente Torres-Costa1, Gonzalo Martínez-Muñoz2, Vanessa Sánchez-Vaquero3, Álvaro Muñoz-Noval1, Laura González-Méndez3, Esther Punzón-Quijorna1,4, Darío Gallach-Pérez1, Miguel Manso-Silván1, Aurelio Climent-Font1,4, Josefa P García-Ruiz3, Raúl J Martín-Palma1
1Department of Applied Physics, 2Department of Computer Science, 3Department of Molecular Biology, 4Centre for Micro Analysis of Materials, Universidad Autónoma de Madrid, Madrid, Spain

Abstract: The engineering of surface patterns is a powerful tool for analyzing cellular communication factors involved in the processes of adhesion, migration, and expansion, which can have a notable impact on therapeutic applications including tissue engineering. In this regard, the main objective of this research was to fabricate patterned and textured surfaces at micron- and nanoscale levels, respectively, with very different chemical and topographic characteristics to control cell–substrate interactions. For this task, one-dimensional (1-D) and two-dimensional (2-D) patterns combining silicon and nanostructured porous silicon were engineered by ion beam irradiation and subsequent electrochemical etch. The experimental results show that under the influence of chemical and morphological stimuli, human mesenchymal stem cells polarize and move directionally toward or away from the particular stimulus. Furthermore, a computational model was developed aiming at understanding cell behavior by reproducing the surface distribution and migration of human mesenchymal stem cells observed experimentally.

Keywords: surface patterns, silicon, hMSCs, ion-beam patterning
A Letter to the Editor has been received and published for this article.

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]