Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging

Authors Zhang M, Ju H, Zhang L, Sun M, Zhou Z, Dai Z, Zhang L, Gong A, Wu C, Du F

Received 12 February 2015

Accepted for publication 16 June 2015

Published 6 November 2015 Volume 2015:10(1) Pages 6943—6953

DOI https://doi.org/10.2147/IJN.S82778

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Editor who approved publication: Dr Lei Yang

Miaomiao Zhang,1,* Huixiang Ju,2,* Li Zhang,1,* Mingzhong Sun,2 Zhongwei Zhou,2 Zhenyu Dai,3 Lirong Zhang,1 Aihua Gong,1 Chaoyao Wu,1 Fengyi Du1

1School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China; 2Department of Clinical Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, People’s Republic of China; 3Radiology Department, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, People’s Republic of China

*These authors contributed equally to this work

Abstract: X-ray computed tomography (CT) is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs) as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm) with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis.

Keywords: carbon dots, contrast agents, iodine-doped, CT imaging

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer

Fan R, Tong A, Li X, Gao X, Mei L, Zhou L, Zhang X, You C, Guo G

International Journal of Nanomedicine 2015, 10:7291-7305

Published Date: 3 December 2015

Development of polymeric–cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery

Jain AK, Massey A, Yusuf H, McDonald DM, McCarthy HO, Kett VL

International Journal of Nanomedicine 2015, 10:7183-7196

Published Date: 24 November 2015

Efficient gene delivery to human umbilical cord mesenchymal stem cells by cationized Porphyra yezoensis polysaccharide nanoparticles

Yu Q, Cao J, Chen B, Deng W, Cao X, Chen J, Wang Y, Wang S, Yu J, Xu X, Gao X

International Journal of Nanomedicine 2015, 10:7097-7107

Published Date: 18 November 2015

Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells

Fay BL, Melamed JR, Day ES

International Journal of Nanomedicine 2015, 10:6931-6941

Published Date: 6 November 2015

Visible-light-responsive ZnCuO nanoparticles: benign photodynamic killers of infectious protozoans

Nadhman A, Nazir S, Khan MI, Ayub A, Muhammad B, Khan M, Shams DF, Yasinzai M

International Journal of Nanomedicine 2015, 10:6891-6903

Published Date: 4 November 2015

Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems

Qiu J, Zhang R, Li J, Sang Y, Tang W, Rivera Gil P, Liu H

International Journal of Nanomedicine 2015, 10:6709-6724

Published Date: 28 October 2015

Biocompatible and biodegradable fibrinogen microspheres for tumor-targeted doxorubicin delivery

Joo JY, Park GY, An SSA

International Journal of Nanomedicine 2015, 10:101-111

Published Date: 1 September 2015

Carcinogenic activity of PbS quantum dots screened using exosomal biomarkers secreted from HEK293 cells

Kim JH, Kim HR, Lee BR, Choi ES, In SI, Kim EJ

International Journal of Nanomedicine 2015, 10:5513-5528

Published Date: 31 August 2015