Back to Journals » International Journal of Nanomedicine » Volume 7

Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention

Authors Wang D, Taylor EW, Wang Y, Wan X, Zhang J

Received 20 December 2011

Accepted for publication 24 January 2012

Published 29 March 2012 Volume 2012:7 Pages 1711—1721

DOI https://doi.org/10.2147/IJN.S29341

Review by Single-blind

Peer reviewer comments 3

Dongxu Wang1, Ethan Will Taylor2, Yijun Wang1, Xiaochun Wan1, Jinsong Zhang1

1Key Laboratory of Tea Biochemistry and Biotechnology, School of Tea and Food Science, Anhui Agricultural University, Hefei, Anhui, People’s Republic of China; 2Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA

Abstract: Chemoprevention that impedes one or more steps in carcinogenesis, via long-term administration of naturally occurring or synthetic compounds, is widely considered to be a crucial strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due to its preventive effects on many types of cancer in various animal models, EGCG has been regarded as a prime example of a promising chemopreventive agent without major toxicity concerns. However, very recently, evidence has accumulated showing that efficacious doses of EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma and remarkably superior chemopreventive effects, with more than tenfold dose advantages in inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle size (“Nano-Se”), compared with Se compounds commonly used in dietary supplements, has significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at nutritional levels and induce phase II enzymes at supranutritional levels.

Keywords: epigallocatechin-3-gallate, chemoprevention, nanoparticles, selenium

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles

Zhang J, Taylor EW, Wan X, Peng D

International Journal of Nanomedicine 2012, 7:815-825

Published Date: 17 February 2012

Readers of this article also read:

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Biomarkers for osteoarthritis: investigation, identification, and prognosis

Zhai G, Aref Eshghi E

Current Biomarker Findings 2012, 2:19-28

Published Date: 29 June 2012

Topical diclofenac in the treatment of osteoarthritis of the knee

Niklas Schuelert, Fiona A Russell, Jason J McDougall

Orthopedic Research and Reviews 2011, 3:1-8

Published Date: 6 February 2011