Back to Journals » International Journal of Nanomedicine » Volume 13

EGFR-targeted photodynamic therapy by curcumin-encapsulated chitosan/TPP nanoparticles

Authors Tsai WH, Yu KH, Huang YC, Lee CI

Received 4 August 2017

Accepted for publication 11 December 2017

Published 9 February 2018 Volume 2018:13 Pages 903—916


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Linlin Sun

Wen-Hsuan Tsai,1 Kun-Hua Yu,1 Yi-Cheng Huang,2 Cheng-I Lee1

1Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, Republic of China; 2Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan, Republic of China

Background: Photodynamic therapy (PDT) is an effective therapy for cancers and is a minimally invasive therapy with low dark toxicity and limited side effects. PDT employs the combination of photosensitizers with a specific light source to produce reactive oxygen species (ROS) to damage tumor cells.
Methods: We fabricated nanoparticles encapsulating curcumin through crosslinking chitosan and tripolyphosphate (TPP). Additionally, the chitosan was conjugated to epidermal growth factor in order to target the epidermal growth factor receptor (EGFR), overexpressed on cancer cells. To investigate PDT using fabricated nanoparticles, we measured cell viabilities and ROS production in relation to EGFR-overexpressing gastric cancer cells and non-cancer gastric cells.
Results: The targeting nanoparticles displayed a superior PDT effect in the cancer cell, with a resultant approximately fourfold decrease in the IC50. The PDT mechanism of curcumin-encapsulated nanoparticles is further identified as the generation of 1O2, the major pathway in PDT.
Conclusion: These curcumin-encapsulated chitosan/TPP nanoparticles are a promising targeted-PDT against EGFR-overexpressing cancers.

EGFR-targeting, cancer, photodynamic therapy, curcumin, chitosan

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]