Back to Journals » Neuropsychiatric Disease and Treatment » Volume 15

Effects of repetitive magnetic stimulation on the growth of primarily cultured hippocampus neurons in vitro and their expression of iron-containing enzymes

Authors Wang Y, Fang K, He S, Fan Y, Yu J, Zhang X

Received 24 December 2018

Accepted for publication 5 March 2019

Published 11 April 2019 Volume 2019:15 Pages 927—934

DOI https://doi.org/10.2147/NDT.S199328

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Andrew Yee

Peer reviewer comments 3

Editor who approved publication: Dr Yu-Ping Ning


Yirong Wang,1 Kewei Fang,2 Shijia He,1 Yang Fan,1 Juming Yu,1 Xiaodong Zhang1

1Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Sichuan, People’s Republic of China; 2Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan, People’s Republic of China

Background: The mechanism of action of repetitive transcranial magnetic stimulation (rTMS) involves the generation of neuronal and action potentials utilizing induced currents in time-varying magnetic fields. However, the long-lasting and effective biological impact of magnetic stimulation does not appear to be completely explained by the transient magnetic field pulses. In this context, we hypothesized magnetic stimulation may affect the expression of iron-containing enzymes in neurons, mediating the long-lasting biological effects associated with this stimulus.
Methods: Primarily cultured hippocampus neurons from SD rats were used as the cell model in this study. These were randomly divided into control, sham, and magnetic stimulation groups to probe into the effect of the magnetic field directly. The latter group received 40%, 60%, and 100% maximal stimulator output Tesla (1.68, 2.52, and 4.2 T) with low-frequency rTMS (1 Hz). The expression of iron-containing enzymes (catalase and aconitase) and non-ferrous enzymes (protein kinase A) was measured with Western blotting and ELISA.
Results: The survival rates of neurons in the 40%T and 60%T groups were significantly increased in comparison to the controls (P<0.05), while those in the 100%T group showed cell damage, with slightly disturbed neurite connections and decreased survival rate. Furthermore, catalase and aconitase expression was higher in all of the stimulated groups in comparison to controls (P<0.05). On the other hand, the expression of the iron-containing enzymes decreased in the 100%T group in comparison with the 40%T and 60%T groups (P<0.05). Meanwhile, the expression of protein kinase A was not significantly increased in the groups which underwent magnetic stimulation.
Conclusion: rTMS may increase the expression of ferrous enzymes but does not have a strong effect on non-ferrous enzymes. Excessive intensity of magnetic stimulation may reduce neuronal survival rate and affect the expression of iron-containing enzymes. The mechanism underlying the lasting effect of rTMS may be related to the increase of ferriferous expression induced by magnetic stimulation, with a clear correlation with stimulation intensity.

Keywords: hippocampus, iron-containing enzymes, neuromechanisms, repetitive magnetic stimulation


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]