Back to Journals » International Journal of Nanomedicine » Volume 7

Effects of polymer molecular weight on relative oral bioavailability of curcumin

Authors Tsai YM, Chang-Liao WL, Chien CF, Lin LC, Tsai TH

Received 4 April 2012

Accepted for publication 3 May 2012

Published 15 June 2012 Volume 2012:7 Pages 2957—2966

DOI https://doi.org/10.2147/IJN.S32630

Review by Single-blind

Peer reviewer comments 2

Yin-Meng Tsai,1 Wan-Ling Chang-Liao,1 Chao-Feng Chien,1 Lie-Chwen Lin,1,2 Tung-Hu Tsai,1,3

1
Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, 2National Research Institute of Chinese Medicine, 3Department of Education and Research, Taipei City Hospital, Taipei, Taiwan

Background: Polylactic-co-glycolic acid (PLGA) nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome.
Methods: Curcumin encapsulated in low (5000–15,000) and high (40,000–75,000) molecular weight PLGA (LMw-NPC and HMw-NPC, respectively) were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples.
Results: There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (Cmax) of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 µg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability compared with conventional curcumin and LMw-NPC.
Conclusion: Our findings demonstrate that different molecular weights of PLGA have varying bioavailability, contributing to changes in the absorption rate at the duodenum. The results of this study provide the rationale for design of a nanomedicine delivery system to enhance the bioavailability of water-insoluble pharmaceutical compounds and functional foods.

Keywords: absorption, duodenum, molecular weight, poly(lactic-co-glycolic acid), PLGA, relative oral bioavailability

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Pharmacokinetics of quercetin-loaded nanodroplets with ultrasound activation and their use for bioimaging

Chang LW, Hou ML, Hung SH, Lin LC, Tsai TH

International Journal of Nanomedicine 2015, 10:3031-3042

Published Date: 17 April 2015

Correlation between radioactivity and chemotherapeutics of the 111In-VNB-liposome in pharmacokinetics and biodistribution in rats

Lee WC, Chang CH, Huang CM, Wu YT, Chen LC, Ho CL, Chang TJ, Lee TW, Tsai TH

International Journal of Nanomedicine 2012, 7:683-692

Published Date: 9 February 2012

Readers of this article also read:

Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold

Cao L, Duan PG, Wang HR, Li XL, Yuan FL, Fan ZY, Li SM, Dong J

International Journal of Nanomedicine 2012, 7:5881-5888

Published Date: 28 November 2012

Erratum

Parizek M, Douglas TEL, Novotna K, Kromka A, Brady MA, Renzing A, Voss E, Jarosova M, Palatinus L, Tesarek P, Ryparova P, Lisa V, dos Santos AM, Bacakova L

International Journal of Nanomedicine 2012, 7:5873-5874

Published Date: 26 November 2012

Liposomes and nanotechnology in drug development: focus on oncotargets

Kozako T, Arima N, Yoshimitsu M, Honda S-I, Soeda S

International Journal of Nanomedicine 2012, 7:4943-4951

Published Date: 14 September 2012

Preparation of a nanoscale baohuoside I-phospholipid complex and determination of its absorption: in vivo and in vitro evaluations

Jin X, Zhang  ZH, Sun E, Qian Q, Tan XB, Jia XB

International Journal of Nanomedicine 2012, 7:4907-4916

Published Date: 13 September 2012

Effect of cell-penetrating peptide-coated nanostructured lipid carriers on the oral absorption of tripterine

Chen Y, Yuan L, Zhou L, Zhang Z, Cao W, Wu Q

International Journal of Nanomedicine 2012, 7:4581-4591

Published Date: 20 August 2012

Corrigendum

Wu Q, Chu M

International Journal of Nanomedicine 2012, 7:4531-4532

Published Date: 15 August 2012

Enhanced absorption of hydroxysafflor yellow A using a self-double-emulsifying drug delivery system: in vitro and in vivo studies

Lv LZ, Tong CQ, Lv Q, Tang XJ, Li LM, Fang QX, Yu J, Han M, Gao JQ

International Journal of Nanomedicine 2012, 7:4099-4107

Published Date: 30 July 2012

Nimodipine-loaded mixed micelles: formulation, compatibility, pharmacokinetics, and vascular irritability study

Song X, Jiang Y, Ren CJ, Sun X, Zhang Q, Gong T, Zhang ZR

International Journal of Nanomedicine 2012, 7:3689-3699

Published Date: 13 July 2012

Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma cell proliferation

Sun H, Chen X, Chen D, Dong M, Fu X, Li Q, Liu X, Wu Q, Qiu T, Wan T, Li S

International Journal of Nanomedicine 2012, 7:3295-3307

Published Date: 6 July 2012