Back to Journals » Clinical Ophthalmology » Volume 15

Effects of Intense Pulsed Light on Tear Film TGF-β and Microbiome in Ocular Rosacea with Dry Eye

Authors Sagaser S, Butterfield R, Kosiorek H, Kusne Y, Maldonado J, Fautsch MP, Patel D, Shen JF

Received 8 September 2020

Accepted for publication 11 November 2020

Published 27 January 2021 Volume 2021:15 Pages 323—330

DOI https://doi.org/10.2147/OPTH.S280707

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Scott Fraser


Video abstract presented by Samantha Sagaser.

Views: 137

Samantha Sagaser,1 Richard Butterfield,2 Heidi Kosiorek,2 Yael Kusne,3 Juan Maldonado,4,5 Michael P Fautsch,6 Dharmendra Patel,3 Joanne F Shen3

1Mayo Clinic Alix School of Medicine, Scottsdale, AZ, USA; 2Research Biostatistics, Mayo Clinic, Scottsdale, AZ, USA; 3Ophthalmology, Mayo Clinic, Scottsdale, AZ, USA; 4Knowledge Enterprise, Genomics Core, Arizona State University, Tempe, AZ, USA; 5Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; 6Ophthalmology, Mayo Clinic, Rochester, MN, USA

Correspondence: Joanne F Shen
Mayo Clinic, 13400 East Shea Blvd, Scottsdale, AZ 85259, USA
Email Shen.Joanne@mayo.edu

Purpose: To assess tear film transforming growth factor-beta (TGF-β) and ocular microbiome changes after intense pulsed light with meibomian gland expression (IPL-MGX) vs only MGX in treating ocular rosacea with dry eye symptoms.
Methods: Twenty patients were randomly assigned to IPL-MGX or MGX. Patients were examined, treated, and administered the ocular surface disease index (OSDI) survey every 4– 6 weeks for four total treatments. Tear film and conjunctival samples were collected at first and last visits, and analyzed for TGF-β concentration and 16s rRNA amplicon sequencing of ocular microbiome. Wilcoxon Rank Sum and Sign-Rank were used to examine changes from baseline.
Results: OSDI revealed significantly greater improvement in symptoms after IPL-MGX (p=0.030) compared to MGX. There was no significant difference in mean TGF-β 1, 2, or 3 concentration after IPL-MGX (p=0.385, 0.709, 0.948, respectively). Quantities of Clostridium, Klebsiella, Brevibacterium, Lactobacillus, Neisseria, Streptococcus, Corynebacterium, Butyricicoccus, and Actinomyces were significantly reduced from baseline in both groups but without a significant difference between the two treatment groups.
Conclusion: IPL-MGX improved dry eye symptoms more than MGX alone. IPL treatment offered no additional benefit to MGX in decreasing virulent bacteria present on the ocular surface and did not influence TGF-β levels in tears. Prospective studies on IPL-MGX with larger sample sizes are needed to further investigate cytokines and IPL in patients suffering from ocular rosacea with dry eye symptoms.
ClinicalTrials.gov Identifier: NCT03194698.

Keywords: intense pulsed light, IPL, meibomian gland expression, dry eye disease, meibomian gland disorder, ocular rosacea, transforming growth factor-beta, TGF-β, tear cytokines, ocular microbiome, OSDI; ocular surface disease index

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]