Back to Journals » Clinical and Experimental Gastroenterology » Volume 4

Effects of casoxin 4 on morphine inhibition of small animal intestinal contractility and gut transit in the mouse

Authors Patten G, Head R, Abeywardena M

Published 10 February 2011 Volume 2011:4 Pages 23—31


Review by Single anonymous peer review

Peer reviewer comments 3

Glen S Patten1,2, Richard J Head1, Mahinda Y Abeywardena1,2
1CSIRO Preventative Health National Research Flagship, Adelaide, Australia; 2CSIRO Food and Nutritional Sciences, Adelaide, Australia

Background and aims: Chronic opioid analgesia has the debilitating side-effect of constipation in human patients. The major aims of this study were to: 1) characterize the opioid-specific antagonism of morphine-induced inhibition of electrically driven contraction of the small intestine of mice, rats, and guinea pigs; and 2) test if the oral delivery of small milk-derived opioid antagonist peptides could block morphine-induced inhibition of intestinal transit in mice.
Methods: Mouse, rat, and guinea pig intact ileal sections were electrically stimulated to contract and inhibited with morphine in vitro. Morphine inhibition was then blocked by opioid subtype antagonists in the mouse and guinea pig. Using a polymeric dye, Poly R-478, the opioid antagonists casoxin 4 and lactoferroxin A were tested orally for blocking activity of morphine inhibition of gut transit in vivo by single or double gavage techniques.
Results: The guinea pig tissue was more sensitive to morphine inhibition compared with the mouse or the rat (IC50 [half maximal inhibitory concentration] values as nmol/L ± SEM were 34 ± 3, 230 ± 13, and 310 ± 14 respectively) (P < 0.01). The inhibitory influence of opioid agonists (IC50) in electrically driven ileal mouse preparations were DADLE ([D-Ala2, D-Leu5]-enkephalin) ≥ met-enkephalin ≥ dynorphin A ≥ DAMGO ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin) > morphine > morphiceptin as nmol/L 13.9, 17.3, 19.5, 23.3, 230, and 403 respectively. The mouse demonstrated predominantly Κ- and δ-opioid receptor activity with a smaller µ-opioid receptor component. Both mouse and guinea pig tissue were sensitive to casoxin 4 antagonism of morphine inhibition of contraction. In contrast to naloxone, relatively high oral doses of the µ-opioid receptor antagonists, casoxin 4 and lactoferroxin A, applied before and after morphine injection were unable to antagonize morphine inhibition of gut transit.
Conclusions: Casoxin 4 reverses morphine-induced inhibition of contraction in mice and guinea pigs in vitro but fails to influence morphine inhibition of mouse small intestinal transit by the oral route.

Keywords: lactoferroxin A, µ-opioid receptor antagonist, opioid agonists

Creative Commons License © 2011 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.