Back to Journals » Therapeutics and Clinical Risk Management » Volume 12

Effectiveness of the clinical pharmacist in reducing mortality in hospitalized cardiac patients: a propensity score-matched analysis

Authors Zhai X, Gu Z, Liu X

Received 14 October 2015

Accepted for publication 16 December 2015

Published 18 February 2016 Volume 2016:12 Pages 241—250

DOI https://doi.org/10.2147/TCRM.S98300

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Hoa Le

Peer reviewer comments 3

Editor who approved publication: Professor Deyun Wang

Video abstract presented by Xiao-bo Zhai

Views: 284

Xiao-bo Zhai,1 Zhi-chun Gu,2 Xiao-yan Liu2

1Department of Pharmacy, Shanghai East Hospital, Affiliated to Tongji University School of Medicine, 2Department of Pharmacy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China

Background: Pharmacist-led medication review services have been assessed in the meta-analyses in hospital. Of the 135 relevant articles located, 21 studies met the inclusion criteria; however, there was no statistically significant difference found between pharmacists’ interventions and usual care for mortality (odds ratio 1.50, 95% confidence interval 0.65, 3.46, P=0.34). These analyses may not have found a statistically significant effect because they did not adequately control the wide variation in the delivery of care and patient selection parameters. Additionally, the investigators did not conduct research on the cases of death specifically and did not identify all possible drug-related problems (DRPs) that could cause or contribute to mortality and then convince physicians to correct. So there will be a condition to use a more precise approach to evaluate the effect of clinical pharmacist interventions on the mortality rates of hospitalized cardiac patients.
Objective:
To evaluate the impact of the clinical pharmacist as a direct patient-care team member on the mortality of all patients admitted to the cardiology unit.
Methods:
A comparative study was conducted in a cardiology unit of a university-affiliated hospital. The clinical pharmacists did not perform any intervention associated with improper use of medications during Phase I (preintervention) and consulted with the physicians to address the DRPs during Phase II (postintervention). The two phases were compared to evaluate the outcome, and propensity score (PS) matching was applied to enhance the comparability. The primary endpoint of the study was the composite of all-cause mortality during Phase I and Phase II.
Results: Pharmacists were consulted by the physicians to correct any drug-related issues that they suspected may cause or contribute to a fatal outcome in the cardiology ward. A total of 1,541 interventions were suggested by the clinical pharmacist in the study group; 1,416 (92.0%) of them were accepted by the cardiology team, and violation of incompatibilities had the highest percentage of acceptance by the cardiology team. All-cause mortality was 1.5% during Phase I (preintervention) and was reduced to 0.9% during Phase II (postintervention), and the difference was statistically significant (P=0.0005). After PS matching, all-cause mortality changed from 1.7% during Phase I down to 1.0% during Phase II, and the difference was also statistically significant (P=0.0074).
Conclusion: DRPs that were suspected to cause or contribute to a possibly fatal outcome were determined by clinical pharmacist service in patients hospitalized in a cardiology ward. Correction of these DRPs by physicians after pharmacist’s advice caused a significant decrease in mortality as analyzed by PS matching. The significant reduction in the mortality rate in this patient population observed in this study is “hypothesis generating” for future randomized studies.

Keywords: drug-related problems, cardiology ward, clinical pharmacists, intervention, propensity score matching

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010