Back to Journals » International Journal of Nanomedicine » Volume 4

Effect of the mechanical activation on size reduction of crystalline acetaminophen drug particles

Authors Biazar E , Beitollahi A, Rezayat SM, Forati T, Asefnejad A, Rahimi M, Zeinali R, Ardeshir M, Hatamjafari F, Sahebalzamani A, Heidari M

Published 1 December 2009 Volume 2009:4 Pages 283—287

DOI https://doi.org/10.2147/IJN.S5895

Review by Single anonymous peer review

Peer reviewer comments 2



Esmaeil Biazar1, Ali Beitollahi2, S Mehdi Rezayat3, Tahmineh Forati4, Azadeh Asefnejad4, Mehdi Rahimi4, Reza Zeinali4, Mahmoud Ardeshir4, Farhad Hatamjafari1, Ali Sahebalzamani4, Majid Heidari4

1Chemistry Department, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran; 2Material Department, Iran University of Science and Technology, Tehran, Iran; 3Department of Pharmacology, School of Medicine, Tehran University of Medical sciences, Tehran, Iran; 4Biomedicall Department, Islamic Azad University, Science and Research Branch, Tehran, Iran

Abstract: The decrease in particle size may offer new properties to drugs. In this study, we investigated the size reduction influence of the acetaminophen (C8H9O2N) particles by mechanical activation using a dry ball mill. The activated samples with the average size of 1 µm were then investigated in different time periods with the infrared (IR), inductively coupled plasma (ICP), atomic force microscopy (AFM), and X-ray diffraction (XRD) methods. The results of the IR and XRD images showed no change in the drug structure after the mechanical activation of all samples. With the peak height at full width at half maximum from XRD and the Scherrer equation, the size of the activated crystallite samples illustrated that the AFM images were in sound agreement with the Scherrer equation. According to the peaks of the AFM images, the average size of the particles in 30 hours of activation was 24 nm with a normal particle distribution. The ICP analysis demonstrated the presence of tungsten carbide particle impurities after activation from the powder sample impacting with the ball and jar. The greatest reduction in size was after milling for 30 hours.

Keywords: acetaminophen, mechanical activation, structure investigation, nanoparticles, ball mill

Creative Commons License © 2009 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.