Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Effect of silk fibroin nanofibers containing silver sulfadiazine on wound healing

Authors Jeong L, Kim MH, Jung J, Min BM, Park WH

Received 17 July 2014

Accepted for publication 22 September 2014

Published 14 November 2014 Volume 2014:9(1) Pages 5277—5287


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Editor who approved publication: Dr Thomas J Webster

Lim Jeong,1 Min Hee Kim,1 Ju-Young Jung,2 Byung Moo Min,3 Won Ho Park1

1Department of Advanced Organic Materials and Textile System Engineering, 2College of Veterinary Medicine, Chungnam National University, Daejeon, 3Department of Oral Biochemistry, School of Dentistry, Seoul National University, Seoul, South Korea

Background: One of the promising applications of silk fibroin (SF) in biomedical engineering is its use as a scaffolding material for skin regeneration. The purpose of this study was to determine the wound healing effect of SF nanofibrous matrices containing silver sulfadiazine (SSD) wound dressings.
Methods: An SF nanofibrous matrix containing SSD was prepared by electrospinning. The cell attachment and spreading of normal human epidermal keratinocytes (NHEK) and normal human epidermal fibroblasts (NHEF) to SF nanofibers containing three different concentrations of SSD contents (0.1, 0.5, and 1.0 wt%) were determined. In addition, a rat wound model was used in this study to determine the wound healing effect of SF nanofibers containing SSD compared with that of Acticoat™, a commercially available wound dressing.
Results: The number of NHEK and NHEF attached to SF nanofibers containing SSD decreased when the concentration of SSD increased. The number of attached NHEF cells was lower than that of attached NHEK cells. The SF matrix with 1.0 wt% SSD produced faster wound healing than Acticoat, although 1.0 wt% SSD inhibited the attachment of epidermal cells to SF nanofibers in vitro.
Conclusion: The cytotoxic effects of SF nanofibers with SSD should be considered in the development of silver-release dressings for wound healing through its antimicrobial activity. It is challenging to design wound dressings that maximize antimicrobial activity and minimize cellular toxicity.

Keywords: silk fibroin, silver sulfadiazine, nanofibrous matrix, wound healing

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other articles by this author:

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Is increasing the dose of Entecavir effective in partial virological responders?

Erturk A, Adnan Akdogan R, Parlak E, Cure E, Cumhur Cure M, Ozturk C

Drug Design, Development and Therapy 2014, 8:621-625

Published Date: 29 May 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Topical diclofenac in the treatment of osteoarthritis of the knee

Niklas Schuelert, Fiona A Russell, Jason J McDougall

Orthopedic Research and Reviews 2011, 3:1-8

Published Date: 6 February 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010