Back to Journals » Infection and Drug Resistance » Volume 13

Effect of Short-Term Antimicrobial Therapy on the Tolerance and Antibiotic Resistance of Multidrug-Resistant Staphylococcus capitis

Authors Yu X, Zheng B, Xiao F, Jin Y, Guo L, Xu H, Luo Q, Xiao Y

Received 16 March 2020

Accepted for publication 26 May 2020

Published 30 June 2020 Volume 2020:13 Pages 2017—2026


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Professor Suresh Antony

Xiao Yu,1,* Beiwen Zheng,1,* Feng Xiao,2 Ye Jin,1 Lihua Guo,1 Hao Xu,1 Qixia Luo,1 Yonghong Xiao1

1State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China; 2Neurosurgery Department, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China

*These authors contributed equally to this work

Correspondence: Yonghong Xiao Email

Background: Bacteria undergo adaptive mutation in the host. However, the specific effect of antimicrobial use on bacterial evolution and genome mutations related to bacterial survival within a patient is unclear.
Materials and Methods: Three S. capitis strains were sequentially isolated from cerebrospinal fluid of a clinical inpatient. Antimicrobial susceptibility, growth rate, biofilm formation and whole blood survival of these strains were measured. Relative fitness was calculated. The virulence was examined in the Galleria mellonella model. Whole-genome sequencing and in silico analysis were performed to explore the genetic mechanisms of the changes in antimicrobial resistance phenotype. Hypothetical proteins are cloned, expressed and characterized by detection the susceptibility to gentamycin.
Results: The first isolate was susceptible to rifampin (MIC=0.25 μg/mL), resistant to gentamicin (MIC=16 μg/mL), while the later two isolates were resistant to rifampin (MIC > 64 μg/mL), susceptible to gentamicin (MIC=4 μg/mL). For the latter two strains, compared to the first, frameshift mutation in a hypothetical protein encoding gene and base substitutions (in genes saeR, moaA and rpoB) were discovered. The mutation of rpoB gene caused rifampicin resistance. Mutations in saeR, moaA and hypothetical gene are associated with changes in other biological traits. Amino acid sequence-based structure and function identification of the hypothetical protein indicated that a mutation in the encoding gene might be associated with altered aminoglycoside susceptibility. Growth curve showed that the later two isolates grew faster than the first isolate with a positive fitness advantage of 13.5%, and 14.8%, accordingly. Biofilm form ability and whole blood survival of the derivative mutants were also enhanced. No significant differences of virulence in the G. mellonella model were observed.
Conclusion: We report here for the first time that short-term clinical antibiotic use was associated with resistance mutations, collateral sensitivity, and positive in vivo fitness advantages to S. capitis during infection.

Keywords: resistance, mutations, collateral sensitivity, adaptive enhancement, selective pressure

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]