Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Effect of microemulsions on transdermal delivery of citalopram: optimization studies using mixture design and response surface methodology

Authors Huang C, Tsai M, Lin Y, Fu Y, Huang Y, Tsai Y, Wu P

Received 30 January 2013

Accepted for publication 22 March 2013

Published 25 June 2013 Volume 2013:8(1) Pages 2295—2304


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Download Article [PDF] 

Chi-Te Huang,1 Ming-Jun Tsai,2,3 Yu-Hsuan Lin,1 Yaw-Sya Fu,4 Yaw-Bin Huang,5 Yi-Hung Tsai,5 Pao-Chu Wu1

1School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, 2Department of Neurology, China Medical University Hospital, Taichung, 3School of Medicine, Medical College, China Medical University, Taichung, 4Faculty of Biomedical Science and Environmental Biology, 5Graduate Institute of Clinical Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of China

Abstract: The aim of this study was to evaluate the potential of microemulsions as a drug vehicle for transdermal delivery of citalopram. A computerized statistical technique of response surface methodology with mixture design was used to investigate and optimize the influence of the formulation compositions including a mixture of Brij 30/Brij 35 surfactants (at a ratio of 4:1, 20%–30%), isopropyl alcohol (20%–30%), and distilled water (40%–50%) on the properties of the drug-loaded microemulsions, including permeation rate (flux) and lag time. When microemulsions were used as a vehicle, the drug permeation rate increased significantly and the lag time shortened significantly when compared with the aqueous control of 40% isopropyl alcohol solution containing 3% citalopram, demonstrating that microemulsions are a promising vehicle for transdermal application. With regard to the pharmacokinetic parameters of citalopram, the flux required for the transdermal delivery system was about 1280 µg per hour. The microemulsions loaded with citalopram 3% and 10% showed respective flux rates of 179.6 µg/cm2 and 513.8 µg/cm2 per hour, indicating that the study formulation could provide effective therapeutic concentrations over a practical application area. The animal study showed that the optimized formulation (F15) containing 3% citalopram with an application area of 3.46 cm2 is able to reach a minimum effective therapeutic concentration with no erythematous reaction.

Keywords: citalopram, microemulsion, transdermal delivery systems

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]