Back to Journals » Vascular Health and Risk Management » Volume 7

Effect of atorvastatin therapy on oxidant-antioxidant status and atherosclerotic plaque formation

Authors Sezer E, Sozmen, Nart, Onat

Published 1 June 2011 Volume 2011:7 Pages 333—343

DOI https://doi.org/10.2147/VHRM.S17781

Review by Single anonymous peer review

Peer reviewer comments 4



Ebru Demirel Sezer1, Eser Yildirim Sozmen1, Deniz Nart2, Taner Onat1
1Medical Biochemistry, 2Pathology Department, Ege University School of Medicine, Izmir, Turkey

Background: The aim of this study was to determine the oxidant–antioxidant status and lipid peroxidation products, as well as paraoxonase and atherosclerotic plaque formation, in a hypercholesterolemic atherosclerosis rabbit model to investigate the effects of atorvastatin in the atherosclerotic process.
Methods: Forty male New Zealand rabbits were divided into four groups, ie, a control group receiving standard pellets, a group receiving atorvastatin therapy, a hypercholesterolemic group receiving an atherogenic diet, and a group receiving both an atherogenic diet and atorvastatin.
Results: The atherogenic diet increased the levels of low-density lipoprotein (LDL) thiobarbituric acid reactive substances (1.84 vs 3.79 nmol/mg protein) and LDL-conjugated diene (147 vs 318 µmol/mg protein) after induction of oxidation by Cu2+, despite an increase of superoxide dismutase activity. Treatment with atorvastatin limited LDL oxidation significantly (LDL thiobarbituric acid reactive substances 2.19 nmol/mg protein, LDL-conjugated diene 222 µmol/mg protein). Paraoxonase, which prevents LDL oxidation and inactivates LDL-derived oxidized phospholipids, showed a pronounced decrease in the group receiving the atherogenic diet (110 U/L to 28 U/L), and atorvastatin treatment increased paraoxonase activity. Histological examination of arcus aorta tissues from the hypercholesterolemic group showed abundant plaque formation surrounding and obstructing the lumen, whereas treatment with atorvastatin prevented or limited plaque formation, keeping the plaque thin and localized.
Conclusion: Atorvastatin has dramatic antiatherosclerotic effects, part of which seems to be due to the antioxidant features of the parent drug and/or its metabolites, favoring inhibition of LDL oxidation.

Keywords: atherosclerosis, atorvastatin, hypercholesterolemia, low-density lipoprotein oxidation, paraoxonase

Creative Commons License © 2011 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.