Back to Journals » International Journal of Nanomedicine » Volume 6

Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer

Authors Jeong YI, Kim DH, Chung CW, Yoo JJ, Choi KH, Kim CH, Ha SH, Kang DH

Published 6 July 2011 Volume 2011:6 Pages 1415—1427

DOI https://doi.org/10.2147/IJN.S19491

Review by Single-blind

Peer reviewer comments 4

Young-Il Jeong1,*, Do Hyung Kim1,2,*, Chung-Wook Chung1, Jin-Ju Yoo1, Kyung Ha Choi1, Cy Hyun Kim1,2, Seung Hee Ha1, Dae Hwan Kang1,2
1National Research and Development Center for Hepatobiliary Cancer, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea, Research Institute for Convergence of Biomedical Science and Technology, 2School of Medicine, Pusan National University, Yangsan, Republic of Korea
*These authors contributed equally to this work.

Background: Polymeric micelles using amphiphilic macromolecules are promising vehicles for antitumor targeting. In this study, we prepared anticancer agent-incorporated polymeric micelles using novel block copolymer.
Methods: We synthesized a block copolymer composed of dextran and poly (DL-lactide-co-glycolide) (DexbLG) for antitumor drug delivery. Doxorubicin was selected as the anticancer drug, and was incorporated into polymeric micelles by dialysis. Polymeric micelles were observed by transmission electron microscopy to be spherical and smaller than 100 nm, with a narrow size distribution. The particle size of doxorubicin-incorporated polymeric micelles increased with increasing drug content. Higher initial drug feeding also increased the drug content.
Results: During the drug-release study, an initial burst release of doxorubicin was observed for 10 hours, and doxorubicin was continuously released over 4 days. To investigate the in vitro anticancer effects of the polymeric micelles, doxorubicin-resistant HuCC-T1 cells were treated with a very high concentration of doxorubicin. In an antiproliferation study, the polymeric micelles showed higher cytotoxicity to doxorubicin-resistant HuCC-T1 cells than free doxorubicin, indicating that the polymeric micelles were effectively engulfed by tumor cells, while free doxorubicin hardly penetrated the tumor cell membrane. On confocal laser scanning microscopy, free doxorubicin expressed very weak fluorescence intensity, while the polymeric micelles expressed strong red fluorescence. Furthermore, in flow cytometric analysis, fluorescence intensity of polymeric micelles was almost twice as high than with free doxorubicin.
Conclusion: DexbLG polymeric micelles incorporating doxorubicin are promising vehicles for antitumor drug targeting.

Keywords: dextran, polymeric micelle, block copolymer, poly(DL-lactide-co-glycolide)

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Vorinostat-eluting poly(DL-lactide-co-glycolide) nanofiber-coated stent for inhibition of cholangiocarcinoma cells

Kwak TW, Lee HL, Song YH, Kim C, Kim JS, Seo SJ, Jeong YI, Kang DH

International Journal of Nanomedicine 2017, 12:7669-7680

Published Date: 17 October 2017

Anticancer activities of epigallocatechin-3-gallate against cholangiocarcinoma cells

Kwak TW, Park SB, Kim HJ, Jeong YI, Kang DH

OncoTargets and Therapy 2017, 10:137-144

Published Date: 22 December 2016

Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery

Lee SJ, Jeong YI, Park HK, Kang DH, Oh JS, Lee SG, Lee HC

International Journal of Nanomedicine 2015, 10:5489-5503

Published Date: 28 August 2015

Release of tissue inhibitor of metalloproteinase-2 from alginate microcapsule encapsulating genetically engineered cells

Kim YS, Jeong YI, Jin SG, Pei J, Wen M, Kim IY, Moon KS, Jung TY, Ryu HH, Jung S

International Journal of Nanomedicine 2013, 8:4351-4359

Published Date: 6 November 2013

Dextran-b-poly(L-histidine) copolymer nanoparticles for pH-responsive drug delivery to tumor cells

Hwang JH, Choi CW, Kim HW, Kim DH, Kwak TW, Lee HM, Kim CH, Chung CW, Jeong YI, Kang DH

International Journal of Nanomedicine 2013, 8:3197-3207

Published Date: 21 August 2013

Readers of this article also read:

Enhancement of the dissolution rate and bioavailability of fenofibrate by a melt-adsorption method using supercritical carbon dioxide

Cha KH, Cho KJ, Kim MS, Kim JS, Park HJ, Park J, Cho W, Park JS, Hwang SJ

International Journal of Nanomedicine 2012, 7:5565-5575

Published Date: 25 October 2012

Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections

Grazú V, Silber AM, Moros M, Asín L, Torres TE, Marquina C, Ibarra MR, Goya GF

International Journal of Nanomedicine 2012, 7:5351-5360

Published Date: 8 October 2012

Do calcifying nanoparticles really contain 16S rDNA?

Shiekh FA

International Journal of Nanomedicine 2012, 7:5051-5052

Published Date: 18 September 2012

Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells

Zhang WJ, Li ZH, Liu Y, Ye DX, Li JH, Xu LY, Wei B, Zhang XL, Liu XY, Jiang XQ

International Journal of Nanomedicine 2012, 7:4459-4472

Published Date: 13 August 2012

RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells

Cai LL, Liu P, Li X, Huang X, Ye YQ, Chen FY, Yuan H, Hu FQ, Du YZ

International Journal of Nanomedicine 2011, 6:3499-3508

Published Date: 21 December 2011

Electrostatic self-assembly of multilayer copolymeric membranes on the surface of porous tantalum implants for sustained release of doxorubicin

Guo X, Chen M, Feng W, Liang J, Zhao H, Tian L, Chao H, Zou X

International Journal of Nanomedicine 2011, 6:3057-3064

Published Date: 28 November 2011

Lipid nanoparticles as delivery vehicles for the Parietaria judaica major allergen Par j 2

Bondì ML, Montana G, Craparo EF, Di Gesù R, Giammona G, Bonura A, Colombo P

International Journal of Nanomedicine 2011, 6:2953-2962

Published Date: 21 November 2011

Solid lipid nanoparticle suspension enhanced the therapeutic efficacy of praziquantel against tapeworm

Xie S, Pan B, Shi B, Zhang Z, Zhang X, Wang M, Zhou W

International Journal of Nanomedicine 2011, 6:2367-2374

Published Date: 18 October 2011