Back to Journals » Drug Design, Development and Therapy » Volume 7

Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy – focus on alogliptin

Authors Capuano A, Sportiello L, Maiorino MI, Rossi F, Giugliano D, Esposito K

Received 14 May 2013

Accepted for publication 12 June 2013

Published 17 September 2013 Volume 2013:7 Pages 989—1001

DOI https://doi.org/10.2147/DDDT.S37647

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3



Annalisa Capuano,1 Liberata Sportiello,1 Maria Ida Maiorino,2 Francesco Rossi,1 Dario Giugliano,2 Katherine Esposito3

1Department of Experimental Medicine, 2Department of Medical, Surgical, Neurological, Metabolic Sciences, and Geriatrics, 3Department of Clinical and Experimental Medicine and Surgery, Second University of Naples, Naples, Italy

Abstract: Type 2 diabetes mellitus is a complex and progressive disease that is showing an apparently unstoppable increase worldwide. Although there is general agreement on the first-line use of metformin in most patients with type 2 diabetes, the ideal drug sequence after metformin failure is an area of increasing uncertainty. New treatment strategies target pancreatic islet dysfunction, in particular gut-derived incretin hormones. Inhibition of the enzyme dipeptidyl peptidase-4 (DPP-4) slows degradation of endogenous glucagon-like peptide-1 (GLP-1) and thereby enhances and prolongs the action of the endogenous incretin hormones. The five available DPP-4 inhibitors, also known as 'gliptins' (sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin), are small molecules used orally with similar overall clinical efficacy and safety profiles in patients with type 2 diabetes. The main differences between the five gliptins on the market include: potency, target selectivity, oral bioavailability, long or short half-life, high or low binding to plasma proteins, metabolism, presence of active or inactive metabolites, excretion routes, dosage adjustment for renal and liver insufficiency, and potential drug–drug interactions. On average, treatment with gliptins is expected to produce a mean glycated hemoglobin (HbA1c) decrease of 0.5%–0.8%, with about 40% of diabetic subjects at target for the HbA1c goal <7%. There are very few studies comparing DPP-4 inhibitors. Alogliptin as monotherapy or added to metformin, pioglitazone, glibenclamide, voglibose, or insulin therapy significantly improves glycemic control compared with placebo in adult or elderly patients with inadequately controlled type 2 diabetes. In the EXAMINE trial, alogliptin is being compared with placebo on cardiovascular outcomes in approximately 5,400 patients with type 2 diabetes. In clinical studies, DPP-4 inhibitors were generally safe and well tolerated. However, there are limited data on their tolerability, due to their relatively recent marketing approval. Alogliptin will be used most when avoidance of hypoglycemic events is paramount, such as in patients with congestive heart failure, renal failure, and liver disease, and in the elderly.

Keywords: type 2 diabetes, DPP-4 inhibitors, alogliptin

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.