Back to Journals » Journal of Pain Research » Volume 6

Dietary methyl content regulates opioid responses in mice

Authors Liang DY, Sun Y, Clark JD

Received 9 January 2013

Accepted for publication 12 February 2013

Published 28 March 2013 Volume 2013:6 Pages 281—287

DOI https://doi.org/10.2147/JPR.S42561

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

De-Yong Liang,1,2 Yuan Sun,1,2 J David Clark1,2

1Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, 2Stanford University School of Medicine, Stanford, CA, USA

Background: Large interindividual differences in clinical responses to opioids and the variable susceptibility to abuse of this class of drugs make their use problematic. We lack a full understanding of the factors responsible for these differences. Dietary factors including methyl donor content have been noted to alter multiple physiological and behavioral characteristics of laboratory animals. The purpose of this research was to determine the effects of dietary methyl donor content on opioid responses in mice.
Methods: Groups of male C57BL/6J mice were treated with high and low methyl donor diets either in the perinatal period or after weaning. Analgesic responses to morphine, as well as tolerance, opioid-induced hyperalgesia, and physical dependence were assessed.
Results: Mice fed high and low methyl donor diets showed equal weight gain over the course of the experiments. Exposure to a high methyl donor diet in the perinatal period enhanced physical dependence. Dietary methyl donor content also altered analgesic responses to low doses of morphine when the dietary treatments were given to the mice after weaning. Opioid-induced hyperalgesia was unaltered by dietary methyl donor content.
Conclusion: High and low methyl donor diet treatment has selective effects on opioid responses depending on the timing of exposure. These findings suggest that examination of DNA methylation patterns in specific brain regions linked to opioid analgesia and dependence may provide specific explanations for dietary effects on opioid responses.

Keywords: opioid, methylation, tolerance, hyperalgesia, dependence

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes

Wang L, Zhang MY, Zhang N, Shi JJ, Zhang HL, Li M, Lu C, Zhang ZZ

International Journal of Nanomedicine 2011, 6:2641-2652

Published Date: 31 October 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010

Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits

Linhua Zhang, Yue Li, Chao Zhang, et al

International Journal of Nanomedicine 2009, 4:175-183

Published Date: 4 September 2009