Back to Journals » Drug Design, Development and Therapy » Volume 9

Development of intramammary delivery systems containing lasalocid for the treatment of bovine mastitis: impact of solubility improvement on safety, efficacy, and milk distribution in dairy cattle

Authors Wang W, Song Y, Petrovski K, Eats P, Trott DJ, Wong HS, Page SW, Perry J, Garg S

Received 22 September 2014

Accepted for publication 29 October 2014

Published 22 January 2015 Volume 2015:9 Pages 631—642

DOI https://doi.org/10.2147/DDDT.S74731

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Professor Shu-Feng Zhou


Wen Wang,1 Yunmei Song,1 Kiro Petrovski,2 Patricia Eats,2 Darren J Trott,2 Hui San Wong,2 Stephen W Page,3 Jeanette Perry,2 Sanjay Garg1

1School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia; 2School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia; 3Luoda Pharma Pty Ltd, Caringbah, NSW, Australia

Background: Mastitis is a major disease of dairy cattle. Given the recent emergence of methicillin-resistant Staphylococcus aureus as a cause of bovine mastitis, new intramammary (IMA) treatments are urgently required. Lasalocid, a member of the polyether ionophore class of antimicrobial agents, has not been previously administered to cows by the IMA route and has favorable characteristics for development as a mastitis treatment. This study aimed to develop an IMA drug delivery system (IMDS) of lasalocid for the treatment of bovine mastitis.
Methods: Minimum inhibitory concentrations (MICs) were determined applying the procedures recommended by the Clinical and Laboratory Standards Institute. Solid dispersions (SDs) of lasalocid were prepared and characterized using differential scanning calorimetry and Fourier transform infrared spectroscopy. IMDSs containing lasalocid of micronized, nano-sized, or as SD form were tested for their IMA safety in cows. Therapeutic efficacy of lasalocid IMDSs was tested in a bovine model involving experimental IMA challenge with the mastitis pathogen Streptococcus uberis.
Results: Lasalocid demonstrated antimicrobial activity against the major Gram-positive mastitis pathogens including S. aureus (MIC range 0.5–8 µg/mL). The solubility test confirmed limited, ion-strength-dependent water solubility of lasalocid. A kinetic solubility study showed that SDs effectively enhanced water solubility of lasalocid (21–35-fold). Polyvinylpyrrolidone (PVP)-lasalocid SD caused minimum mammary irritation in treated cows and exhibited faster distribution in milk than either nano or microsized lasalocid. IMDSs with PVP-lasalocid SD provided effective treatment with a higher mastitis clinical and microbiological cure rate (66.7%) compared to cloxacillin (62.5%).
Conclusion: Lasalocid SD IMDS provided high cure rates and effectiveness in treating bovine mastitis with acceptable safety in treated cows.

Keywords: ionophore, methicillin-resistant Staphylococcus aureus, solid dispersion, intramammary drug delivery system, superbugs

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]