Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Development of biodegradable methylprednisolone microparticles for treatment of articular pathology using a spray-drying technique

Authors Tobar-Grande B, Godoy R, Bustos P, von Plessing C, Fattal E, Tsapis N, Olave C, Gómez-Gaete C

Received 18 October 2012

Accepted for publication 22 December 2012

Published 27 May 2013 Volume 2013:8(1) Pages 2065—2076

DOI https://doi.org/10.2147/IJN.S39327

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Blanca Tobar-Grande,1 Ricardo Godoy,1 Paulina Bustos,2 Carlos von Plessing,1 Elias Fattal,3,4 Nicolas Tsapis,3,4 Claudia Olave,1 Carolina Gómez-Gaete1

1Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; 2Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; 3Univ Paris-Sud, Institut Galien Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France; 4CNRS, UMR 8612, Faculté de Pharmacie, Châtenay-Malabry, France

Abstract: In this work, microparticles were prepared by spray-drying using albumin, chondroitin sulfate, and hyaluronic acid as excipients to create a controlled-release methylprednisolone system for use in inflammatory disorders such as arthritis. Scanning electron microscopy demonstrated that these microparticles were almost spherical, with development of surface wrinkling as the methylprednisolone load in the formulation was increased. The methylprednisolone load also had a direct influence on the mean diameter and zeta potential of the microparticles. Interactions between formulation excipients and the active drug were evaluated by x-ray diffraction, differential scanning calorimetry, and thermal gravimetric analysis, showing limited amounts of methylprednisolone in a crystalline state in the loaded microparticles. The encapsulation efficiency of methylprednisolone was approximately 89% in all formulations. The rate of methylprednisolone release from the microparticles depended on the initial drug load in the formulation. In vitro cytotoxic evaluation using THP-1 cells showed that none of the formulations prepared triggered an inflammatory response on release of interleukin-1ß, nor did they affect cellular viability, except for the 9.1% methylprednisolone formulation, which was the maximum test concentration used. The microparticles developed in this study have characteristics amenable to a therapeutic role in inflammatory pathology, such as arthritis.

Keywords: spray-drying, microparticles, methylprednisolone, chondroitin sulfate, hyaluronic acid, cytotoxic assays

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Current perspectives in stem cell research for knee cartilage repair

Orth P, Rey-Rico A, Venkatesan JK, Madry H, Cucchiarini M

Stem Cells and Cloning: Advances and Applications 2014, 7:1-17

Published Date: 16 January 2014

Erratum

Schuelert N, Russell FA, McDougall JJ

Orthopedic Research and Reviews 2011, 3:9-10

Published Date: 1 March 2011

Topical diclofenac in the treatment of osteoarthritis of the knee

Niklas Schuelert, Fiona A Russell, Jason J McDougall

Orthopedic Research and Reviews 2011, 3:1-8

Published Date: 6 February 2011