Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity

Authors Shetty PK, Venuvanka V, Jagani HV, Chethan GH, Ligade VS, Musmade PB, Nayak UY, Reddy MS, Kalthur G, Udupa N, Rao CM, Mutalik S

Received 23 June 2015

Accepted for publication 12 September 2015

Published 13 October 2015 Volume 2015:10(1) Pages 6477—6491

DOI https://doi.org/10.2147/IJN.S90964

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Govarthanan Muthusamy

Peer reviewer comments 3

Editor who approved publication: Dr Thomas J Webster

Pallavi Krishna Shetty,1 Venkatesh Venuvanka,1 Hitesh Vitthal Jagani,1 Gejjalagere Honnappa Chethan,1 Virendra S Ligade,1 Prashant B Musmade,1 Usha Y Nayak,1 Meka Sreenivasa Reddy,1 Guruprasad Kalthur,2 Nayanabhirama Udupa,1 Chamallamudi Mallikarjuna Rao,1 Srinivas Mutalik1

1Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, 2Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, Karnataka, India

Abstract: The objective of present work was to develop novel sunscreen creams containing polymeric nanoparticles (NPs) of morin. Polymeric NPs containing morin were prepared and optimized. The creams containing morin NPs were also prepared and evaluated. Optimized NPs exhibited particle size of 90.6 nm and zeta potential of -31 mV. The entrapment efficiency of morin, within the polymeric NPs, was found to be low (12.27%). Fourier transformed infrared spectroscopy and differential scanning calorimetry studies revealed no interaction between morin and excipients. Transmission electron microscopy and atomic force microscopy revealed that the NPs were spherical in shape with approximately 100 nm diameter. Optimized NPs showed excellent in vitro free radical scavenging activity. Skin permeation and deposition of morin from its NPs was higher than its plain form. Different sunscreen creams (SC1–SC8) were formulated by incorporating morin NPs along with nano zinc oxide and nano titanium dioxide. SC5 and SC8 creams showed excellent sun protection factor values (≈40). In vitro and in vivo skin permeation studies of sunscreen creams containing morin NPs indicated excellent deposition of morin within the skin. Morin NPs and optimized cream formulations (SC5 and SC8) did not exhibit cytotoxicity in Vero and HaCaT cells. Optimized sunscreen creams showed excellent dermal safety. SC5 and SC8 creams demonstrated exceptional in vivo antioxidant effect (estimation of catalase, superoxide dismutase, and glutathione) in UV radiation-exposed rats. The optimized sunscreen creams confirmed outstanding UV radiation protection as well as antioxidant properties.

Keywords: nanoparticles, skin permeation, sunscreen, morin, sun protection factor
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design

Fard Masoumi HR, Basri M, Sarah Samiun W, Izadiyan Z, Lim CJ

International Journal of Nanomedicine 2015, 10:6469-6476

Published Date: 13 October 2015

Effect of particle size on oral absorption of carvedilol nanosuspensions: in vitro and in vivo evaluation

Liu DD, Pan H, He FW, Wang XY, Li JY, Yang XG, Pan WS

International Journal of Nanomedicine 2015, 10:6425-6434

Published Date: 13 October 2015

Attenuation of the macrophage inflammatory activity by TiO2 nanotubes via inhibition of MAPK and NF-κB pathways

Neacsu P, Mazare A, Schmuki P, Cimpean A

International Journal of Nanomedicine 2015, 10:6455-6467

Published Date: 12 October 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010