Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Detection of PLGA-based nanoparticles at a single-cell level by synchrotron radiation FTIR spectromicroscopy and correlation with X-ray fluorescence microscopy

Authors Pascolo L, Bortot B, Benseny-Cases N, Gianoncelli A, Tosi G, Ruozi B, Rizzardi C, De Martino E, Vandelli MA, Severini GM

Received 4 December 2013

Accepted for publication 17 January 2014

Published 7 June 2014 Volume 2014:9(1) Pages 2791—2801

DOI https://doi.org/10.2147/IJN.S58685

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Lorella Pascolo,1 Barbara Bortot,1 Nuria Benseny-Cases,2 Alessandra Gianoncelli,3 Giovanni Tosi,4 Barbara Ruozi,4 Clara Rizzardi,5 Eleonora De Martino,1 Maria Angela Vandelli,4 Giovanni Maria Severini1

1Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico Burlo Garofolo, Trieste, Italy; 2European Synchrotron Radiation Facility, Polygone Scientifique Louis Néel, Grenoble, France; 3Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, Italy; 4Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; 5Department of Anatomical Pathology, Department of Pathology and Forensic Medicine, University of Trieste, Trieste, Italy

Abstract: Poly-lactide-co-glycolide (PLGA) is one of the few polymers approved by the US Food and Drug Administration as a carrier for drug administration in humans; therefore, it is one of the most used materials in the formulation of polymeric nanoparticles (NPs) for therapeutic purposes. Because the cellular uptake of polymeric NPs is a hot topic in the nanomedicine field, the development of techniques able to ensure incontrovertible evidence of the presence of NPs in the cells plays a key role in gaining understanding of their therapeutic potential. On the strength of this premise, this article aims to evaluate the application of synchrotron radiation-based Fourier transform infrared spectroscopy (SR-FTIR) spectromicroscopy and SR X-ray fluorescence (SR-XRF) microscopy in the study of the in vitro interaction of PLGA NPs with cells. To reach this goal, we used PLGA NPs, sized around 200 nm and loaded with superparamagnetic iron oxide NPs (PLGA-IO-NPs; Fe3O4; size, 10–15 nm). After exposing human mesothelial (MeT5A) cells to PLGA-IO-NPs (0.1 mg/mL), the cells were analyzed after fixation both by SR-FTIR spectromicroscopy and SR-XRF microscopy setups. SR-FTIR-SM enabled the detection of PLGA NPs at single-cell level, allowing polymer detection inside the biological matrix by the characteristic band in the 1,700–2,000 cm-1 region. The precise PLGA IR-signature (1,750 cm-1 centered pick) also was clearly evident within an area of high amide density. SR-XRF microscopy performed on the same cells investigated under SR-FTIR microscopy allowed us to put in evidence the Fe presence in the cells and to emphasize the intracellular localization of the PLGA-IO-NPs. These findings suggest that SR-FTIR and SR-XRF techniques could be two valuable tools to follow the PLGA NPs’ fate in in vitro studies on cell cultures.

Keywords: PLGA-NPs, cell targeting, SR-FTIR, SR-XRF, imaging

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Multifaceted prospects of nanocomposites for cardiovascular grafts and stents

Vellayappan MV, Balaji A, Subramanian AP, John AA, Jaganathan SK, Murugesan S, Supriyanto E, Yusof M

International Journal of Nanomedicine 2015, 10:2785-2803

Published Date: 7 April 2015

Preparation and therapeutic evaluation of 188Re-thermogelling emulsion in rat model of hepatocellular carcinoma

Shih YH, Lin XZ, Yeh CH, Peng CL, Shieh MJ, Lin WJ, Luo TY

International Journal of Nanomedicine 2014, 9:4191-4201

Published Date: 2 September 2014

Fabrication of nanoadjuvant with poly-ɛ-caprolactone (PCL) for developing a single-shot vaccine providing prolonged immunity [Corrigendum]

Prashant CK, Bhat M, Srivastava SK, Saxena A, Kumar M, Singh A, Samim M, Ahmad FJ, Dinda AK

International Journal of Nanomedicine 2014, 9:4033-4034

Published Date: 21 August 2014

Enhanced activity of carbosilane dendrimers against HIV when combined with reverse transcriptase inhibitor drugs: searching for more potent microbicides

Vacas-Córdoba E, Galán M, de la Mata FJ, Gómez R, Pion M, Muñoz-Fernández MA

International Journal of Nanomedicine 2014, 9:3591-3600

Published Date: 29 July 2014

Manganese ferrite-based nanoparticles induce ex vivo, but not in vivo, cardiovascular effects

Nunes ADC, Ramalho LS, Souza APS, Mendes EP, Colugnati DB, Zufelato N, Sousa MH, Bakuzis AF, Castro CH

International Journal of Nanomedicine 2014, 9:3299-3312

Published Date: 8 July 2014

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010