Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Dendrimers functionalized with membrane-interacting peptides for viral inhibition

Authors Tarallo R, Carberry TP, Falanga A, Vitiello M, Galdiero S, Galdiero M, Weck M

Received 5 September 2012

Accepted for publication 27 October 2012

Published 5 February 2013 Volume 2013:8(1) Pages 521—534

DOI https://doi.org/10.2147/IJN.S37739

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Rossella Tarallo,1 Tom P Carberry,2 Annarita Falanga,1 Mariateresa Vitiello,3 Stefania Galdiero,1 Massimiliano Galdiero,3 Marcus Weck2

1Dipartimento di Farmacia, Università di Napoli "Federico II," and DFM Scarl, Napoli, Italia; 2Molecular Design Institute and Department of Chemistry, New York University, New York, NY, USA; 3Dipartimento di Medicina Sperimentale, Seconda Università degli Studi di Napoli, Napoli, Italia

Abstract: This contribution reports the synthesis of a poly(amide)-based dendrimer functionalized at the termini with a membrane-interacting peptide derived from the herpes simplex virus (HSV) type 1 glycoprotein H, namely gH625-644. This peptide has been shown to interact with model membranes and to inhibit viral infectivity. The peptidodendrimer inhibits both HSV-1 and HSV-2 at a very early stage of the entry process, most likely through an interaction with the viral envelope glycoproteins; thus, preventing the virus from coming into close contact with cellular membranes, a prerequisite of viral internalization. The 50% inhibitory concentration was 100 and 300 nM against HSV-1 and HSV-2 respectively, with no evidence of cell toxicity at these concentrations. These results show that the functionalization of a dendrimer with the peptide sequence derived from an HSV glycoprotein shows promising inhibitory activity towards viruses of the Herpesviridae family.

Keywords: peptidodendrimer, antiviral activity, membranotropic peptides

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010