Back to Journals » International Journal of Nanomedicine » Volume 7

Degradable biocomposite of nano calcium- deficient hydroxyapatite-multi(amino acid) copolymer

Authors Li H, Gong M,Yang AP, Ma J, Li XD, Yan YG

Received 8 December 2011

Accepted for publication 15 January 2012

Published 8 March 2012 Volume 2012:7 Pages 1287—1295

DOI https://doi.org/10.2147/IJN.S28978

Review by Single-blind

Peer reviewer comments 5

Hong Li1, Min Gong1, Aiping Yang1, Jian Ma2, Xiangde Li3, Yonggang Yan1

1School of Physical Science and Technology, Sichuan University, Chengdu People’s Republic of China; 2Hospital of Stomatology, Tongji University, ShanghaiPeople’s Republic of China; 3Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China

Background and methods: A nano calcium-deficient hydroxyapatite (n-CDHA)-multi(amino acid) copolymer (MAC) composite bone substitute biomaterial was prepared using an in situ polymerization method. The composition, structure, and compressive strength of the composite was characterized, and the in vitro degradability in phosphate-buffered solution and preliminary cell responses to the composite were investigated.
Results: The composite comprised n-CDHA and an amide linkage copolymer. The compressive strength of the composite was in the range of 88–129 MPa, varying with the amount of n-CDHA in the MAC (ranging from 10 wt% to 50 wt%). Weight loss from the composite increased (from 32.2 wt% to 44.3 wt%) with increasing n-CDHA content (from 10 wt% to 40 wt%) in the MAC after the composite was soaked in phosphate-buffered solution for 12 weeks. The pH of the soaking medium varied from 6.9 to 7.5. MG-63 cells with an osteogenic phenotype were well adhered and spread on the composite surface. Viability and differentiation increased with time, indicating that the composite had no negative effects on MG-63 cells.
Conclusion: The n-CDHA-MAC composite had good cytocompatibility and has potential to be used as a bone substitute.

Keywords: calcium deficient hydroxyapatite, multi(amino acid) copolymer, biocomposite, degradability, cytocompatibility

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels

Wang Q, Larese-Casanova P, Webster TJ

International Journal of Nanomedicine 2015, 10:2885-2894

Published Date: 13 April 2015

Factors associated with group bullying and psychopathology in elementary school students using child-welfare facilities

Kim JW, Lee K, Lee YS, Han DH, Min KJ, Song SH, Park GN, Lee JY, Kim JO

Neuropsychiatric Disease and Treatment 2015, 11:991-998

Published Date: 7 April 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010