Back to Journals » Drug Design, Development and Therapy » Volume 13

Cytoprotective effects of molsidomine against methotrexate-induced hepatotoxicity: an experimental rat study

Authors Samdanci ET, Huz M, Ozhan O, Tanbek K, Pamukcu E, Akatli AN, Parlakpinar H

Received 26 July 2018

Accepted for publication 19 October 2018

Published 20 December 2018 Volume 2019:13 Pages 13—21

DOI https://doi.org/10.2147/DDDT.S181550

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Colin Mak

Peer reviewer comments 4

Editor who approved publication: Dr Georgios Panos


Emine Turkmen Samdanci,1 Mustafa Huz,1 Onural Ozhan,2 Kevser Tanbek,3 Esra Pamukcu,4 Ayse Nur Akatli,1 Hakan Parlakpinar2

1Department of Pathology, Inonu University School of Medicine, Malatya, Turkey; 2Department of Pharmacology, Inonu University School of Medicine, Malatya, Turkey; 3Department of Physiology, Inonu University School of Medicine, Malatya, Turkey; 4Department of Statistics, Firat University Faculty of Science, Elaziğ, Turkey

Introduction and aim: Methotrexate (Mtx) is an antineoplastic and immunosuppressive drug that may cause hepatotoxicity, whereas molsidomine (Mol) is a vasodilating and antioxidant agent. This study aimed to investigate the potential protective effects of Mol in Mtx-induced liver toxicity in rats.
Materials and methods: Forty Wistar albino rats were equally divided into five groups: control, Mol, Mtx, Mol–Mtx, and Mtx–Mol. Following treatment, the animals were sacrificed, and liver tissue samples were histopathologically evaluated using Roening grading and Bcl-2 antibody staining. Tissue oxidants, antioxidants, and serum transaminases were measured and statistically compared across all groups.
Results: No hepatic fibrosis or steatosis was observed in any of the groups. In the Mtx group, grade 2 liver injury and score 2 Bcl-2 antibody staining were observed; however, in the Mol–Mtx group, these were lower (grade 1, score 1). There were no statistically significant differences in serum transaminase levels among groups. Malondialdehyde levels were higher in all rats that received Mtx, but no differences in myeloperoxidase levels were observed among the groups. Levels of tissue antioxidants, including superoxide dismutase, glutathione (GSH) peroxidase (GSH-Px), and reduced GSH, were significantly higher in the Mol-treated and Mol pre-treated groups. Catalase (CAT) levels were elevated in all Mol-treated groups, but only in that group were CAT levels statistically significantly higher than in the control group.
Conclusion: Our results suggest that some oxidant levels could increase following Mtx administration in the liver, possibly contributing to liver damage, whereas Mol could mitigate the histopathological and biochemical effects of hepatotoxicity. However, molecular studies are required to understand the exact mechanisms of these alterations.

Keywords: methotrexate, molsidomine, hepatotoxicity, hepatic fibrosis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]