Back to Journals » Vascular Health and Risk Management » Volume 9

Current status of NADPH oxidase research in cardiovascular pharmacology

Authors Rodiño-Janeiro BK, Paradela-Dobarro B, Castiñeiras-Landeira MI, Raposeiras-Roubín S, González-Juanatey JR, Álvarez E

Received 11 April 2013

Accepted for publication 22 May 2013

Published 25 July 2013 Volume 2013:9 Pages 401—428

DOI https://doi.org/10.2147/VHRM.S33053

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2


Bruno K Rodiño-Janeiro,1,2 Beatriz Paradela-Dobarro,1 María Isabel Castiñeiras-Landeira,1 Sergio Raposeiras-Roubín,1,3 José R González-Juanatey,1,3,4 Ezequiel Álvarez1,4

1Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain; 2European Molecular Biology Laboratory, Grenoble, France; 3Cardiology Department, University Clinic Hospital of Santiago de Compostela, Santiago de Compostela, Spain; 4Medicine Department, University of Santiago de Compostela, Santiago de Compostela, Spain

Abstract: The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years.

Keywords: nicotinamide adenine dinucleotide phosphate oxidase, NOX, cardiovascular therapeutic targets, inhibitors, pharmacophore models

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]