Back to Journals » Drug Design, Development and Therapy » Volume 9

Curcuma purpurascens BI. rhizome accelerates rat excisional wound healing: involvement of Hsp70/Bax proteins, antioxidant defense, and angiogenesis activity

Authors Rouhollahi E, Moghadamtousi SZ, Hajiaghaalipour F, Zahedifard M, Tayeby F, Awang K, Abdulla MA, Mohamed Z

Received 8 May 2015

Accepted for publication 18 June 2015

Published 27 October 2015 Volume 2015:9 Pages 5805—5813

DOI https://doi.org/10.2147/DDDT.S88196

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Rasika Samarasinghe

Peer reviewer comments 3

Editor who approved publication: Professor Shu-Feng Zhou

Elham Rouhollahi,1 Soheil Zorofchian Moghadamtousi,2 Fatemeh Hajiaghaalipour,3 Maryam Zahedifard,2 Faezeh Tayeby,2 Khalijah Awang,4 Mahmood Ameen Abdulla,3 Zahurin Mohamed1

1Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, 2Institute of Biological Sciences, Faculty of Science, 3Department of Biomedical Science, Faculty of Medicine, 4Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

Purpose: Curcuma purpurascens BI. is a member of Zingiberaceae family. The purpose of this study is to investigate the wound healing properties of hexane extract of C. purpurascens rhizome (HECP) against excisional wound healing in rats.
Materials and methods: Twenty four rats were randomly divided into 4 groups: A) negative control (blank placebo, acacia gum), B) low dose of HECP, C) high dose of HECP, and D) positive control, with 6 rats in each group. Full-thickness incisions (approximately 2.00 cm) were made on the neck area of each rat. Groups 1–4 were treated two-times a day for 20 days with blank placebo, HECP (100 mg/kg), HECP (200 mg/kg), and intrasite gel as a positive control, respectively. After 20 days, hematoxylin and eosin and Masson’s trichrome stainings were employed to investigate the histopathological alterations. Protein expressions of Bax and Hsp70 were examined in the wound tissues using immunohistochemistry analysis. In addition, levels of enzymatic antioxidants and malondialdehyde representing lipid peroxidation were measured in wound tissue homogenates.
Results: Macroscopic evaluation of wounds showed conspicuous elevation in wound contraction after topical administration of HECP at both doses. Moreover, histopathological analysis revealed noteworthy reduction in the scar width correlated with the enhanced collagen content and fibroblast cells, accompanied by a reduction of inflammatory cells in the granulation tissues. At the molecular level, HECP facilitates wound-healing process by downregulating Bax and upregulating Hsp70 protein at the wound site. The formation of new blood vessel was observed in Masson’s trichrome staining of wounds treated with HECP (100 and 200 mg/kg). In addition, HECP administration caused a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation.
Conclusion: These findings suggested that HECP accelerated wound-healing process in rats via antioxidant activity, angiogenesis effect and anti-inflammatory responses involving Hsp70/Bax.

Keywords: Zingiberaceae, wound closure, immunohistochemistry, antioxidant enzyme activity, inflammatory cells

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

The chemopreventive potential of Curcuma purpurascens rhizome in reducing azoxymethane-induced aberrant crypt foci in rats

Rouhollahi E, Moghadamtousi SZ, Al-Henhena N, Kunasegaran T, Hasanpourghadi M, Looi CY, Abd Malek SN, Awang K, Abdulla MA, Mohamed Z

Drug Design, Development and Therapy 2015, 9:3911-3922

Published Date: 27 July 2015

Readers of this article also read:

Efficacy of trabectedin in advanced soft tissue sarcoma: beyond lipo- and leiomyosarcoma

De Sanctis R, Marrari A, Marchetti S, Mussi C, Balzarini L, Lutman FR, Daolio P, Bastoni S, Bertuzzi AF, Quagliuolo V, Santoro A

Drug Design, Development and Therapy 2015, 9:5785-5791

Published Date: 27 October 2015

Rationale and clinical utility of the darunavir–cobicistat combination in the treatment of HIV/AIDS

Putcharoen O, Do T, Avihingsanon A, Ruxrungtham K

Drug Design, Development and Therapy 2015, 9:5763-5769

Published Date: 23 October 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010