Back to Journals » Clinical Ophthalmology » Volume 11

Corneal biomechanical properties after laser-assisted in situ keratomileusis and photorefractive keratectomy

Authors Hwang ES, Stagg BC, Swan R, Fenzl CR, McFadden M, Muthappan V, Santiago-Caban L, Mifflin MD, Moshirfar M

Received 29 May 2017

Accepted for publication 22 August 2017

Published 3 October 2017 Volume 2017:11 Pages 1785—1789

DOI https://doi.org/10.2147/OPTH.S142821

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Colin Mak

Peer reviewer comments 2

Editor who approved publication: Dr Scott Fraser


Eileen S Hwang,1 Brian C Stagg,1 Russell Swan,1 Carlton R Fenzl,1 Molly McFadden,2 Valliammai Muthappan,1 Luis Santiago-Caban,1 Mark D Mifflin,1 Majid Moshirfar1,3

1Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, 2Department of Internal Medicine, University of Utah, Salt Lake City, 3HDR Research Center, Hoopes Vision, Draper, UT, USA

Background: The purpose of this study was to evaluate the effects of laser-assisted in situ keratomileusis (LASIK) and photorefractive keratectomy (PRK) on corneal biomechanical properties.
Methods: We used the ocular response analyzer to measure corneal hysteresis (CH) and corneal resistance factor (CRF) before and after refractive surgery.
Results: In all, 230 eyes underwent LASIK and 115 eyes underwent PRK without mitomycin C (MMC). Both procedures decreased CH and CRF from baseline. When MMC was used after PRK in 20 eyes, it resulted in lower corneal biomechanical properties at 3 months when compared to the other procedures, but all three procedures had similar values at 12 months.
Conclusion: Significant but similar decreases in corneal biomechanical properties after LASIK, PRK without MMC, and PRK with MMC were noted.

Keywords: corneal biomechanics, photorefractive keratectomy, laser-assisted in situ keratomileusis, corneal hysteresis, corneal resistance factor, mitomycin C

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]