Back to Journals » International Journal of Nanomedicine » Volume 7

Controlled-release formulation of antihistamine based on cetirizine zinc-layered hydroxide nanocomposites and its effect on histamine release from basophilic leukemia (RBL-2H3) cells

Authors Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Ismail M, Zainal Z, Hakim MN

Received 12 February 2012

Accepted for publication 9 March 2012

Published 3 July 2012 Volume 2012:7 Pages 3351—3363

DOI https://doi.org/10.2147/IJN.S30809

Review by Single-blind

Peer reviewer comments 2

Samer Hasan Hussein Al Ali,1 Mothanna Al-Qubaisi,2 Mohd Zobir Hussein,1,3 Maznah Ismail,2,4 Zulkarnain Zainal,1 Muhammad Nazrul Hakim5

1Department of Chemistry, Faculty of Science, 2Laboratory of Molecular Biomedicine, Institute of Bioscience, 3Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), 4Department of Nutrition and Dietetics, Faculty of Medicine and Health Science, Universiti Putra, Malaysia; 5Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia

Abstract: A controlled-release formulation of an antihistamine, cetirizine, was synthesized using zinc-layered hydroxide as the host and cetirizine as the guest. The resulting well-ordered nanolayered structure, a cetirizine nanocomposite "CETN," had a basal spacing of 33.9 Å, averaged from six harmonics observed from X-ray diffraction. The guest, cetirizine, was arranged in a horizontal bilayer between the zinc-layered hydroxide (ZLH) inorganic interlayers. Fourier transform infrared spectroscopy studies indicated that the intercalation takes place without major change in the structure of the guest and that the thermal stability of the guest in the nanocomposites is markedly enhanced. The loading of the guest in the nanocomposites was estimated to be about 49.4% (w/w). The release study showed that about 96% of the guest could be released in 80 hours by phosphate buffer solution at pH 7.4 compared with about 97% in 73 hours at pH 4.8. It was found that release was governed by pseudo-second order kinetics. Release of histamine from rat basophilic leukemia cells was found to be more sensitive to the intercalated cetirizine in the CETN compared with its free counterpart, with inhibition of 56% and 29%, respectively, at 62.5 ng/mL. The cytotoxicity assay toward Chang liver cells line show the IC50 for CETN and ZLH are 617 and 670 µg/mL, respectively.

Keywords: cetirizine hydrochloric acid, nanocomposite, zinc-layered hydroxide, histamine release, rat basophilic leukemia (RBL-2H3) cells

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Hippuric acid nanocomposite enhances doxorubicin and oxaliplatin-induced cytotoxicity in MDA-MB231, MCF-7 and Caco2 cell lines

Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Ismail M, Bullo S

Drug Design, Development and Therapy 2013, 7:25-31

Published Date: 14 January 2013

Comparative study of Mg/Al- and Zn/Al-layered double hydroxide-perindopril erbumine nanocomposites for inhibition of angiotensin-converting enzyme

Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Ismail M, Zainal Z, Hakim MN

International Journal of Nanomedicine 2012, 7:4251-4262

Published Date: 3 August 2012

Preparation of hippurate-zinc layered hydroxide nanohybrid and its synergistic effect with tamoxifen on HepG2 cell lines

Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Zainal Z, Hakim MN

International Journal of Nanomedicine 2011, 6:3099-3111

Published Date: 1 December 2011

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Is increasing the dose of Entecavir effective in partial virological responders?

Erturk A, Adnan Akdogan R, Parlak E, Cure E, Cumhur Cure M, Ozturk C

Drug Design, Development and Therapy 2014, 8:621-625

Published Date: 29 May 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Controlled-release approaches towards the chemotherapy of tuberculosis

Saifullah B, Hussein MZ, Hussein Al Ali SH

International Journal of Nanomedicine 2012, 7:5451-5463

Published Date: 12 October 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Systematic in-vitro evaluation of the NCI/NIH Developmental Therapeutics Program Approved Oncology Drug Set for the identification of a candidate drug repertoire for MLL-rearranged leukemia

Hoeksema KA, Jayanthan A, Cooper T, Gore L, Trippett T, Boklan J, Arceci RJ, Narendran A

OncoTargets and Therapy 2011, 4:149-168

Published Date: 5 September 2011