Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment

Authors Madani SY, Shabani F, Dwek MV, Seifalian AM

Received 1 August 2012

Accepted for publication 9 September 2012

Published 3 March 2013 Volume 2013:8(1) Pages 941—950

DOI https://doi.org/10.2147/IJN.S36416

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Seyed Yazdan Madani,1 Farzad Shabani,3 Miriam V Dwek,2 Alexander M Seifalian1,3

1UCL Centre for Nanotechnology and Regenerative Medicine, University College, London, UK; 2Department of Molecular and Applied Biosciences, School of Life Sciences, University of Westminster, London, UK; 3Royal Free London NHS Foundation Trust Hospital, London, UK

Abstract: Cancer is one of the leading causes of death worldwide and early detection provides the best possible prognosis for cancer patients. Nanotechnology is the branch of engineering that deals with the manipulation of individual atoms and molecules. This area of science has the potential to help identify cancerous cells and to destroy them by various methods such as drug delivery or thermal treatment of cancer. Carbon nanotubes (CNT) and quantum dots (QDs) are the two nanoparticles, which have received considerable interest in view of their application for diagnosis and treatment of cancer. Fluorescent nanoparticles known as QDs are gaining momentum as imaging molecules with life science and clinical applications. Clinically they can be used for localization of cancer cells due to their nano size and ability to penetrate individual cancer cells and high-resolution imaging derived from their narrow emission bands compared with organic dyes. CNTs are of interest to the medical community due to their unique properties such as the ability to deliver drugs to a site of action or convert optical energy into thermal energy. By attaching antibodies that bind specifically to tumor cells, CNTs can navigate to malignant tumors. Once at the tumor site, the CNTs enter into the cancer cells by penetration or endocytosis, allowing drug release, and resulting in specific cancer cell death. Alternatively, CNTs can be exposed to near-infrared light in order to thermally destroy the cancer cells. The amphiphilic nature of CNTs allows them to penetrate the cell membrane and their large surface area (in the order of 2600 m2/g) allows drugs to be loaded into the tube and released once inside the cancer cell. Many research laboratories, including our own, are investigating the conjugation of QDs to CNTs to allow localization of the cancer cells in the patient, by imaging with QDs, and subsequent cell killing, via drug release or thermal treatment. This is an area of huge interest and future research and therapy will focus on the multimodality of nanoparticles. In this review, we seek to explore the biomedical applications of QDs conjugated to CNTs, with a particular emphasis on their use as therapeutic platforms in oncology.

Keywords: carbon nanotubes, quantum dots, cancer, photothermal therapy, drug delivery, cytotoxicity, near-infrared light

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Stem cell tracking using iron oxide nanoparticles

Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM

International Journal of Nanomedicine 2014, 9:1641-1653

Published Date: 31 March 2014

Near-infrared quantum dots for HER2 localization and imaging of cancer cells

Rizvi SB, Rouhi S, Taniguchi S, Yang SY, Green M, Keshtgar M, Seifalian AM

International Journal of Nanomedicine 2014, 9:1323-1337

Published Date: 11 March 2014

A novel POSS-coated quantum dot for biological application

Rizvi SB, Yildirimer L, Ghaderi S, Ramesh B, Seifalian AM, Keshtgar M

International Journal of Nanomedicine 2012, 7:3915-3927

Published Date: 2 August 2012

Functionalization of single-walled carbon nanotubes and their binding to cancer cells

Madani SY, Tan A, Dwek M, Seifalian AM

International Journal of Nanomedicine 2012, 7:905-914

Published Date: 22 February 2012

A new era of cancer treatment: carbon nanotubes as drug delivery tools

Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM

International Journal of Nanomedicine 2011, 6:2963-2979

Published Date: 22 November 2011

The application of exosomes as a nanoscale cancer vaccine

Aaron Tan, Hugo De La Peña, Alexander M Seifalian

International Journal of Nanomedicine 2010, 5:889-900

Published Date: 10 November 2010

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010