Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Concepts and practices used to develop functional PLGA-based nanoparticulate systems

Authors Sah H, Thoma LA, Desu HR, Sah E, Wood GC

Received 29 November 2012

Accepted for publication 11 January 2013

Published 21 February 2013 Volume 2013:8(1) Pages 747—765

DOI https://doi.org/10.2147/IJN.S40579

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Hongkee Sah,1,2 Laura A Thoma,2 Hari R Desu,2 Edel Sah,3 George C Wood2

1College of Pharmacy, Ewha Womans University, Sedaemun-gu, Seoul, South Korea; 2College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA; 3College of Science, University of Notre Dame, Notre Dame, IN, USA

Abstract: The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in-vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell–type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner.

Keywords: nanoparticulate dosage forms, nanoparticles, polylactide-co-glycolide, functionality

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Optimal delivery of male breast cancer follow-up care: improving outcomes

Ferzoco RM, Ruddy KJ

Breast Cancer: Targets and Therapy 2015, 7:371-379

Published Date: 23 November 2015

Oncolytic Sendai virus-based virotherapy for cancer: recent advances

Saga K, Kaneda Y

Oncolytic Virotherapy 2015, 4:141-147

Published Date: 1 October 2015

Advances in cancer pain from bone metastasis

Zhu XC, Zhang JL, Ge CT, Yu YY, Wang P, Yuan TF, Fu CY

Drug Design, Development and Therapy 2015, 9:4239-4245

Published Date: 18 August 2015

Non-small-cell lung cancer: molecular targeted therapy and personalized medicine – drug resistance, mechanisms, and strategies

Sechler M, Cizmic AD, Avasarala S, Van Scoyk M, Brzezinski C, Kelley N, Bikkavilli RK, Winn RA

Pharmacogenomics and Personalized Medicine 2013, 6:25-36

Published Date: 4 April 2013

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Capecitabine in the management of colorectal cancer

Hirsch BR, Zafar SY

Cancer Management and Research 2011, 3:79-89

Published Date: 24 March 2011