Back to Journals » International Journal of Nanomedicine » Volume 13

Comparison of normal versus imiquimod-induced psoriatic skin in mice for penetration of drugs and nanoparticles

Authors Sun L, Liu Z, Lin Z, Cun D, Tong HHY, Yan R, Wang R, Zheng Y

Received 12 April 2018

Accepted for publication 12 June 2018

Published 21 September 2018 Volume 2018:13 Pages 5625—5635


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Dr Thomas Webster

Lin Sun,1,2 Zeyu Liu,1 Zibei Lin,1 Dongmei Cun,3 Henry HY Tong,4 Ru Yan,1 Ruibing Wang,1 Ying Zheng1

1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region, People’s Republic of China; 2Department of Pharmaceutical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, People’s Republic of China; 3Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People’s Republic of China; 4School of Health Sciences, Macao Polytechnic Institute, Macao Special Administrative Region, People’s Republic of China

As an immune-mediated skin disease, psoriasis encounters therapeutic challenges on topical drug development due to the unclear mechanism, and complicated morphological and physiological changes in the skin.
Methods: In this study, imiquimod-induced psoriatic mouse skin (IMQ-psoriatic skin) was chosen as the in vitro pathological model to explore the penetration behaviors of drugs and nanoparticles (NPs).
Results: Compared with normal skin, significantly higher penetration and skin accumulation were observed in IMQ-psoriatic skin for all the three model drugs. When poorly water-soluble curcumin was formulated as NPs that were subsequently loaded in gel, the drug’s penetration and accumulation in both normal and IMQ-psoriatic skins were significantly improved, in comparison with that of the curcumin suspension. Interestingly, the NPs’ size effect, in terms of their penetration and accumulation behaviors, was more pronounced for IMQ-psoriatic skin. Furthermore, by taking three sized FluoSpheres® as model NPs, confocal laser scanning microscopy demonstrated that the penetration pathways of NPs no longer followed the hair follicles channels, instead they were more widely distributed in the IMQ-psoriatic skin.
Conclusion: In conclusion, the alternation of the IMQ-psoriatic skin structure will lead to the enhanced penetration of drug and NPs, and should be considered in topical drug formulation and further clinical practice for psoriasis therapy.

Keywords: imiquimod-induced psoriatic skin, pathological model, topical delivery, penetration, nanoparticles

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]